Espaces de modules de surfaces plates et leur forme volume
Thèses d'Orsay, no. 764 (2008) , 164 p.

Dans cette thèse, nous nous intéressons aux trois types de surfaces plates à singularités coniques suivants :

  • surfaces de translation à bord géodésique,
  • surfaces avec forêt effaçante, et
  • surfaces plates homéomorphes à la sphère 𝕊 2 .

Nous étudions les espaces de modules de ces surfaces et relions leurs propriétés aux propriétés de l’espace de modules des surfaces de translation.

Les résultats principaux de cette thèse sont les suivants : nous montrons tout d’abord que les espaces de modules en question sont tous des orbifolds. Plus précisément, ces espaces sont des quotients des variétés plates affines complexes par des groupes agissant proprement discontinument. Dans un deuxième temps, nous construisons de manière uniforme une forme volume sur chacun de ces espaces. Notons que les surfaces de translation (fermées) sont un cas particulier des surfaces de translation à bord géodésiques. Dans ce cas, notre forme volume est égale, à une constante multiplicative près, à la forme volume habituelle définie par l’application de périodes.

Dans [Th], Thurston étudie l’espace de modules des surfaces plates polyèdrales, il montre que cet espace est muni d’une structure métrique hyperbolique complexe. Nous montrerons que la forme volume induite par la métrique hyperbolique complexe coïncide, à une constante multiplicative près, avec notre forme volume.

Pour les surfaces de translation à bord géodésique dont le bord est non-vide, ainsi que les surfaces avec forêt effaçante, nous définissons des fonctions d’énergie sur leur espace de modules qui tiennent compte de l’aire de la surface, et de la longueur du bord, ou des arbres. Nous montrons que les volumes de ces espaces renormalisés par cette énergie sont finis. Nous retrouvons, comme cas particuliers, le fait que l’espace de modules des surfaces de translation, et l’espace de modules des structures métriques plates sur la sphère sont de volume fini.

In this thesis, we are interested in three types of flat surfaces :

  • translation surfaces with geodesic boundary,
  • flat surfaces with erasing forest, and
  • spherical flat surfaces.

We study the moduli spaces of those surfaces, and relate their properties to those of moduli spaces of (closed) translation surfaces.

The main results of this thesis are the followings : first, we prove that the moduli spaces under consideration are orbifolds. More precisely, they are quotients of flat complex affine manifolds by some groups acting properly discontinuously. Next, we define a volume form on each of those moduli spaces by similar method. Note that (closed) translation surfaces are a particular case of translation surfaces with geodesic boundary. In this case, up to a multiplication constant, our volume form equals the usual one, which is defined by the period mapping.

In [Th], Thurston studies the moduli space of flat surfaces isometric to polyhedra, he shows that this moduli space can be equipped with a complex hyperbolic metric structure. We prove that the volume form induced by the complex hyperbolic metric and our volume form coincide, up to a multiplication constant.

For translation surfaces with geodesic boundary, and flat surfaces with erasing forest, we define some energy functions, which involve the area of the surface, and the length of its boundary, or the total length of the trees in the forest, on their moduli spaces respectively. We prove that the volumes of our moduli spaces normalized by these energy functions are finite. We deduce from this result the fact that the volumes of the moduli space of translation surfaces, and the volume of the moduli space of flat metric structures on the sphere are finite.

@phdthesis{BJHTUP11_2008__0764__A1_0,
     author = {Nguyen, Duc-Manh},
     title = {Espaces de modules de surfaces plates et leur forme volume},
     series = {Th\`eses d'Orsay},
     publisher = {Universit\'e de Paris-Sud Facult\'e des Sciences d'Orsay},
     number = {764},
     year = {2008},
     language = {fr},
     url = {http://archive.numdam.org/item/BJHTUP11_2008__0764__A1_0/}
}
TY  - BOOK
AU  - Nguyen, Duc-Manh
TI  - Espaces de modules de surfaces plates et leur forme volume
T3  - Thèses d'Orsay
PY  - 2008
IS  - 764
PB  - Université de Paris-Sud Faculté des Sciences d'Orsay
UR  - http://archive.numdam.org/item/BJHTUP11_2008__0764__A1_0/
LA  - fr
ID  - BJHTUP11_2008__0764__A1_0
ER  - 
%0 Book
%A Nguyen, Duc-Manh
%T Espaces de modules de surfaces plates et leur forme volume
%S Thèses d'Orsay
%D 2008
%N 764
%I Université de Paris-Sud Faculté des Sciences d'Orsay
%U http://archive.numdam.org/item/BJHTUP11_2008__0764__A1_0/
%G fr
%F BJHTUP11_2008__0764__A1_0
Nguyen, Duc-Manh. Espaces de modules de surfaces plates et leur forme volume. Thèses d'Orsay, no. 764 (2008), 164 p. http://numdam.org/item/BJHTUP11_2008__0764__A1_0/

[B] P. Buser Geometry and Spectra of Compact Riemann Surfaces. Progress in Mathematics, Birkhäuser (1992). | MR | Zbl

[BG] C. Bavard, E. Ghys : Polygones du plan et polyèdres hyperboliques. Geom. Dedicata 43, No. 2, 207-224 (1992). | MR | Zbl | DOI

[BS] A.I. Bobenko, B.A. Springborn : A discrete Laplace-Beltrami operator for simplicial surfaces. Discrete Comput. Geom., 38, No. 4, 740-756 (2007). | MR | Zbl | DOI

[EMZ] A. Eskin, H. Masur, A. Zorich : Moduli spaces of abelian differentials : The principal boundary, counting problems, and the Siegel-Veech constants. Publ. Math. Inst. Hautes Études Sci. No. 97, 61-179 (2003). | MR | Zbl | Numdam

[EO] A. Eskin, A. Okounkov : Asymptotics of number of branched coverings of a torus and volume of moduli spaces of holomorphic diferentials. Invent. Math., 145 : 1, 59-104 (2001). | MR | Zbl

[Ga] F. Gardiner : Teichmüller Theory and Quadratic Differentials. In collecion : Pure and Applied Mathematics-A Wiley-Interscience series (1987). | MR | Zbl

[Go] W.M. Goldman : Complex Hyperbolic Geometry. In collection : Oxford mathematical monographs, Oxford University Press (1999). | MR | Zbl

[K] M. Konsevich : Lyapunov exponents and Hodge theory. "The mathematical beauty of physics" (Saclay, 1996), (in Honor of C. Itzykson) 318-332, Adv. Ser. Math. Phys., 24. World Sci. Publishing, River Edge, NJ(1997). | MR | Zbl

[KMS] S. Kerckhoff, H. Masur, J. Smillie : Ergodicity of billiard flows and quadratic differentials. Ann. of Math. (2) 124, 293-311(1986). | MR | Zbl

[KZ] M. Konsevich, A. Zorich : Connected components of the moduli spaces of Abelian differentials. Invent. Math., 153 : 3, 631-678 (2003). | MR | Zbl

[M] H. Masur : Inteval exchange transformations and measured foliations. Annals of Math. 115, 169-200 (1982). | MR | Zbl

[MT] H. Masur, S. Tabachnikov : Rational billards and flat structures. In : B. Hasselblatt and A. Katok (ed) : Handbook of Dynamical Systems, Vol. 1A, Elsevier Sience B.V., 1015-1089 (2002). | MR | Zbl

[Th] W.R. Thurston : Shape of polyhedra and triangulations of the sphere. In : "The Epstein Birthday Schrift", Geom. Topo. Monogr., 1, Geom. Topo. Pub., Coventry 511-549 (1998). | MR | Zbl | DOI

[Tr1] M. Troyanov : Prescribing curvature on compact surfaces with conical singularities. Trans. Amer. Math. Soc. 324 : 2, 793-821 (1991). | MR | Zbl | DOI

[Tr2] M. Troyanov : On the moduli space of singular Euclidean surfaces. In : "Handbook of Teichmüller theory." Vol. I, 507-540. IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich (2007). | MR | Zbl | DOI

[V1] W.A. Veech : Moduli spaces of quadratic differentials. Journal d'Analyse Math., 55, 117-171 (1990). | MR | Zbl | DOI

[V2] W.A. Veech : Flat surfaces. Amer. Journal of Math., 115, 589-689 (1993). | MR | Zbl | DOI

[V3] W.A. Veech : Gauss measures for transformations on the space of interval exchange maps. Ann. Math., 115, 201-242 (1982). | MR | Zbl

[Z1] A. Zorich : Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents. Ann. Inst. Fourier, 46, 325-370 (1996). | MR | Zbl | Numdam | DOI

[Z2] A. Zorich : Flat surfaces. In collection "Frontiers in Number Theory, Physics and Geometry", Vol. 1 : On random matrices, zeta functions and dynamical systems, Ecole de Physique des Houches, France, March 9-21 2003, Springer-Verlag (2006). | MR | Zbl