On s’intéresse dans cette thèse aux ensembles minimaux.
Dans la première partie on étudie les cônes minimaux au sens d’Almgren de dimension dans , ce qui est une première étape obligée et utile dans l’étude des ensembles minimaux. La minimalité au sens d'Almgren de l'union de deux plans presque orthogonaux est établie. La méthode est généralisée pour montrer que l'union presque orthogonale de plusieurs plans ou hyperplans, et l'union presque orthogonale d'un plan et un sont minimales.
Dans la seconde partie on introduit une définition de minimiseur topologique, qui généralise celle de minimiseur de Mumford-Shah. On montrera des propriétés des minimiseurs topologiques, et fera un premier pas dans la direction d'une caractérisation des minimiseurs topologiques. On restreindra aussi la classe potentielle des Almgren-minimiseurs de qui ne seraient pas des cônes.
In the thesis we discuss the theory of minimal sets.
In the first part we study -dimensional Almgren minimal cones in , which is the first useful and necessary step to study Almgren minimal sets. We establish the Almgren minimality of the union of a pair of almost orthogonal planes in . The method is also generalized to prove the minimality of the almost orthogonal union of several planes or hyperplanes, as well as the almost orthogonal union of a plane and a in .
In the second part we introduce a definition of topological minimal sets, which is a generalization of that of Mumford-Shah-minimal sets. We prove some properties of topological minimal sets, and make a first step towards a characterisation of topological minimal sets. We restrict also the potential class of those Almgren minimal sets in which are not cones.
@phdthesis{BJHTUP11_2010__0808__P0_0, author = {Liang, Xiangyu}, title = {Ensembles et c\^ones minimaux de dimension $2$ dans les espaces euclidiens}, series = {Th\`eses d'Orsay}, publisher = {Universit\'e Paris-Sud 11 Facult\'e des Sciences d'Orsay}, number = {808}, year = {2010}, language = {fr}, url = {http://archive.numdam.org/item/BJHTUP11_2010__0808__P0_0/} }
TY - BOOK AU - Liang, Xiangyu TI - Ensembles et cônes minimaux de dimension $2$ dans les espaces euclidiens T3 - Thèses d'Orsay PY - 2010 IS - 808 PB - Université Paris-Sud 11 Faculté des Sciences d'Orsay UR - http://archive.numdam.org/item/BJHTUP11_2010__0808__P0_0/ LA - fr ID - BJHTUP11_2010__0808__P0_0 ER -
Liang, Xiangyu. Ensembles et cônes minimaux de dimension $2$ dans les espaces euclidiens. Thèses d'Orsay, no. 808 (2010), 201 p. http://numdam.org/item/BJHTUP11_2010__0808__P0_0/
Sommaire
[1] On the first variation of a varifold. Ann. of Math. (2), 95 : 417-491, 1972. | MR | Zbl
.[2] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Memoirs of the American Mathematical Society, 4 (165), 1976. | MR | Zbl | DOI
.[3] On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré, Analyse non linéaire, 13 (4) : 485-528, 1996. | MR | Zbl | Numdam
.[4] Topology and Geometry. Graduate Texts in Mathematics 139. Springer-Verlag, 1993. | MR | Zbl
.[5] On the triangulation of regular loci. Ann. of Math., 35 : 579-587, 1934. | MR | JFM
.[6] A simple triangulation method for smooth manifolds. Bull. Amer. Math. Soc, 67 (4) : 389-390, 1961. | MR | Zbl | DOI
.[7] Limits of Almgren-quasiminimal sets. Proceedings of the conference on Harmonic Analysis, Mount Holyoke, A.M.S. Contemporary Mathematics series, 320 : 119-145, 2003. | MR | Zbl | DOI
.[8] Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics. Birkhäuser, 2005. | MR | Zbl
.[9] Hölder regularity of two-dimensional almost-minimal sets in . Annales de la Faculté des Sciences de Toulouse, XVIII (1) :65-246, 2009. | MR | Zbl | Numdam
.[10] -regularity for two-dimensional almost-minimal sets in . Journal of geometric analysis, à paraître. | MR | Zbl
.[11] Uniform rectifiablilty and quasiminimizing sets of arbitrary codimension. Memoirs of the A.M.S., 144 (687), 2000. | MR | Zbl
and .[12] Boundary detection by minimizing functionals. In IEEE Conference on computer vision and pattern recognition, San Francisco, 1985.
and .[13] Topology. Allyn and Bacon. Inc., Boston, 1966. | Zbl | MR
.[14] Geometric measure theory. Grundlehren der Mathematishen Wissenschaften 153. Springer Verlag, 1969. | MR | Zbl
.[15] Un résultat d'existence pour les ensembles minimaux par optimisation sur des grilles polyédrales. PhD thesis, Université de Paris-Sud 11, orsay, September 2008.
.[16] Some wild cells and spheres in three-dimensional space. Ann. of Math., 49 : 979-990, 1948. | MR | Zbl
and .[17] An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs. Edizioni della normale, 2005. | MR | Zbl
and .[18] Algebraic topology. Cambridge university press, 2001. | MR | Zbl
.[19] Isogonal sphärischen netze. Ann. Univ. Sci. Budapest Eötvös Sect. Math, 7 : 41-48, 1964. | MR | Zbl
.[20] Differential Topology. Graduate Texts in Mathematics 33. Springer-Verlag, 1976. | MR | Zbl
.[21] Sur la stabilité des systèmes liquides en lames minces. Mémoires de l'Académie Royale de Belgique, 35 : 3-104, 1864.
.[22] The angle criterion. Invent. math., 95 : 437-446, 1989. | MR | Zbl
.[23] Pairs of planes which are not size-minimizing. Indiana Univ. Math. J., 43 : 651-661, 1994. | MR | Zbl | DOI
.[24] Geometry of sets and measures in Euclidean space. Cambridge Studies in Advanced Mathematics 44. Cambridge University Press, 1995. | MR | Zbl
.[25] Examples of unoriented area-minimizing surfaces. Transactions of the American mathematical society, 283 (1) : 225-237, 1984. | MR | Zbl | DOI
.[26] Soap films and mathematics. Proceedings of Symposia in Pure Mathematics, 54 : Part 1, 1993. | MR | Zbl | DOI
.[27] Sufficient conditions for a pair of n-planes to be area-minimizing. Math. Ann., 279 : 161-164, 1987. | MR | Zbl
.[28] Size minimising surfaces. Annales scientifiques de l'école normale supérieure, 42 : 37-101, 2009. | MR | Zbl | Numdam
.[29] Size minimization and approximating problems. Calculus of Variations, 17 : 405-442, 2003. | MR | Zbl
and .[30] Real and complex analysis. McGraw-Hill Publishins Co., 3rd edition, 1987. | Zbl | MR
.[31] Introduction to Fourier analysis on Euclidiean spaces. Princeton University Press, 1971. | MR | Zbl
and .[32] The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces. Ann. of Math. (2), 103 :489-539, 1976. | MR | Zbl
.[33] Geometric integration theory. Princeton University Press, 1957. | MR | Zbl
.