@article{BSMF_1969__97__129_0, author = {Nicolas, J. L.}, title = {Ordre maximal d{\textquoteright}un \'el\'ement du groupe $S_n$ des permutations et {\guillemotleft} highly composite numbers {\guillemotright}}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {129--191}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {97}, year = {1969}, doi = {10.24033/bsmf.1676}, mrnumber = {40 #7340}, zbl = {0184.07202}, language = {fr}, url = {https://www.numdam.org/articles/10.24033/bsmf.1676/} }
TY - JOUR AU - Nicolas, J. L. TI - Ordre maximal d’un élément du groupe $S_n$ des permutations et « highly composite numbers » JO - Bulletin de la Société Mathématique de France PY - 1969 SP - 129 EP - 191 VL - 97 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/bsmf.1676/ DO - 10.24033/bsmf.1676 LA - fr ID - BSMF_1969__97__129_0 ER -
%0 Journal Article %A Nicolas, J. L. %T Ordre maximal d’un élément du groupe $S_n$ des permutations et « highly composite numbers » %J Bulletin de la Société Mathématique de France %D 1969 %P 129-191 %V 97 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/bsmf.1676/ %R 10.24033/bsmf.1676 %G fr %F BSMF_1969__97__129_0
Nicolas, J. L. Ordre maximal d’un élément du groupe $S_n$ des permutations et « highly composite numbers ». Bulletin de la Société Mathématique de France, Tome 97 (1969), pp. 129-191. doi : 10.24033/bsmf.1676. https://www.numdam.org/articles/10.24033/bsmf.1676/
[1] On highly composite and similar numbers, Trans. Amer. math. Soc., t. 56, 1944, p. 448-469. | MR | Zbl
and . -[2] On highly composite numbers, J. London. math. Soc., t. 19, 1944, p. 130-133. | MR | Zbl
. -[3] Handbuch der Lehre von der Verteilung der Primzahlen. - Leipzig und Berlin, B. G. Teubner, 1909. | JFM
. -[4] Ordre maximal d'un élément du groupe des permutations et nombres très hautement abondants, C. R. Acad. Sc. Paris, t. 266, 1968, Série A, p. 513-515. | MR | Zbl
.[5] Sur l'ordre maximum d'un élément dans le groupe Sn des permutations, Acta Arithmetica, t. 14, 1968, p. 315-332. | MR | Zbl
. -[6] Highly abundant number, Bull. Calcutta math. Soc., t. 35, 1943, p. 141-156. | MR | Zbl
. -[7] Highly composite number, J. Indian. math. Soc., t. 8, 1944, p. 61-74. | MR | Zbl
. -[8] Primzahlverleilung. - Berlin, Springer-Verlag, 1957 (Die Grundlehren der mathematischen Wissenschaft, 91). | Zbl
. -[9] Highly composite numbers, Proc. London math. Soc., Séries 2, t. 14, 1915, p. 347-400 ; and Collected papers. - Cambridge, at the University Press, 1927, p. 78-128. | JFM
. -[10] The difference between consecutive prime numbers, J. London math. Soc., t. 13, 1938, p. 242-247. | JFM | MR | Zbl
. -[11] The difference between consecutive prime numbers, V, Proc. Edimburgh math. Soc., t. 13, 1963, p. 331-332. | MR | Zbl
. -[12] Eine Bemerkung zur construction grosser Primzahllucken, Arch. der Math., t. 14, 1963, p. 29-30. | Zbl
. -[13] An inequality for the arithmetical function g(x), J. Indian math. Soc., t. 3, 1939, p. 316-318. | JFM | MR | Zbl
. -[14] O liczbach (1, 2, ..., n) [en polonais], Wiadom Math., 2, (9), 1966, p. 9-10. | MR | Zbl
. -- The Hamilton Compression of Highly Symmetric Graphs, Annals of Combinatorics, Volume 28 (2024) no. 2, p. 379 | DOI:10.1007/s00026-023-00674-y
- Highly composite numbers and the Riemann hypothesis, The Ramanujan Journal, Volume 57 (2022) no. 2, p. 507 | DOI:10.1007/s11139-021-00392-0
- The sum of divisors function and the Riemann hypothesis, The Ramanujan Journal, Volume 58 (2022) no. 4, p. 1113 | DOI:10.1007/s11139-021-00491-y
- On Landau’s Function g(n), The Mathematics of Paul Erdős I (2013), p. 207 | DOI:10.1007/978-1-4614-7258-2_14
- The First Years, Rational Number Theory in the 20th Century (2012), p. 13 | DOI:10.1007/978-0-85729-532-3_2
- Le plus grand facteur premier de la fonction de Landau, The Ramanujan Journal, Volume 27 (2012) no. 1, p. 109 | DOI:10.1007/s11139-011-9293-2
- On the size of inverse semigroups given by generators, Theoretical Computer Science, Volume 412 (2011) no. 8-10, p. 765 | DOI:10.1016/j.tcs.2010.11.021
- Some Open Questions, The Ramanujan Journal, Volume 9 (2005) no. 1-2, p. 251 | DOI:10.1007/s11139-005-0836-2
- On deterministic finite automata and syntactic monoid size, Theoretical Computer Science, Volume 327 (2004) no. 3, p. 319 | DOI:10.1016/j.tcs.2004.04.010
- On Deterministic Finite Automata and Syntactic Monoid Size, Developments in Language Theory, Volume 2450 (2003), p. 258 | DOI:10.1007/3-540-45005-x_22
- On Deterministic Finite Automata and Syntactic Monoid Size, Continued, Developments in Language Theory, Volume 2710 (2003), p. 349 | DOI:10.1007/3-540-45007-6_28
- Finite Groups of Matrices Whose Entries Are Integers, The American Mathematical Monthly, Volume 109 (2002) no. 2, p. 173 | DOI:10.1080/00029890.2002.11919850
- On Large Values of the Divisor Function, Analytic and Elementary Number Theory, Volume 1 (1998), p. 225 | DOI:10.1007/978-1-4757-4507-8_14
- On Landau’s Function g(n), The Mathematics of Paul Erdös I, Volume 13 (1997), p. 228 | DOI:10.1007/978-3-642-60408-9_18
- The largest prime dividing the maximal order of an element of 𝑆_𝑛, Mathematics of Computation, Volume 64 (1995) no. 209, p. 407 | DOI:10.1090/s0025-5718-1995-1270619-3
- Hyperidentities, Algebras and Orders (1993), p. 405 | DOI:10.1007/978-94-017-0697-1_10
- Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, Volume 53 (1989) no. 188, p. 665 | DOI:10.1090/s0025-5718-1989-0979940-4
- The Maximum Order of an Element of a Finite Symmetric Group, The American Mathematical Monthly, Volume 94 (1987) no. 6, p. 497 | DOI:10.1080/00029890.1987.12000673
- Algorithmes relatifs a la decomposition des polynomes, Theoretical Computer Science, Volume 1 (1976) no. 3, p. 227 | DOI:10.1016/0304-3975(76)90058-x
Cité par 19 documents. Sources : Crossref