A generalized commutation relation for the regular representation
Bulletin de la Société Mathématique de France, Tome 97 (1969) , pp. 289-297.
@article{BSMF_1969__97__289_0,
     author = {Takesaki, M.},
     title = {A generalized commutation relation for the regular representation},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {289--297},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {97},
     year = {1969},
     doi = {10.24033/bsmf.1683},
     zbl = {0188.20101},
     mrnumber = {40 \#7831},
     language = {en},
     url = {archive.numdam.org/item/BSMF_1969__97__289_0/}
}
Takesaki, M. A generalized commutation relation for the regular representation. Bulletin de la Société Mathématique de France, Tome 97 (1969) , pp. 289-297. doi : 10.24033/bsmf.1683. http://archive.numdam.org/item/BSMF_1969__97__289_0/

[1] Bourbaki (N.). - Intégration, chap. 7-8. - Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). | Zbl 0156.03204

[2] Dixmier (J.). - Les algèbres d'opérateurs dans l'espace hilbertien. - Paris, Gauthier-Villars, 1957. | Zbl 0088.32304

[3] Dixmier (J.). - Les C*-algèbres et leurs représentations. - Paris, Gauthier-Villars, 1964 (Cahiers scientifiques, 29). | MR 30 #1404 | Zbl 0152.32902

[4] Dixmier (J.). - Algèbres quasi-unitaires, Comment. Math. Helvet., t. 26, 1952, p. 275-322. | MR 14,660b | Zbl 0047.35601

[5] Doplicher (S.), Kastler (D.) and Robinson (D. W.). - Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys., Berlin, t. 3, 1966, p. 1-28. | MR 34 #4930 | Zbl 0152.23803

[6] Fell (J. M. G.). - An extension of Mackey's method to representations of algebraic bundles (to appear).

[7] Glimm (J.). - Families of induced representations, Pacific J. Math., t. 12, 1962, p. 885-911. | MR 26 #3819 | Zbl 0121.10303

[8] Loomis (L. H.). - Note on a theorem of Mackey, Duke Math. J., t. 19, 1952, p. 641-645. | MR 14,352c | Zbl 0047.35501

[9] Mackey (G. W.). - A theorem of Stone and von Neumann, Duke Math. J., t. 16, 1949, p. 313-326. | MR 11,10b | Zbl 0036.07703

[10] Mackey (G. W.). - Induced representations of locally compact groups, I, Annals of Math., Series 2, t. 55, 1952, p. 101-139. | MR 13,434a | Zbl 0046.11601

[11] Mackey (G. W.). - Unitary representations of group extensions, Acta Math., t. 99, 1958, p. 265-311. | MR 20 #4789 | Zbl 0082.11301

[12] Mackey (G. W.). - Infinite-dimensional group representations, Bull. Amer. math. Soc., t. 69, 1963, p. 628-686. | MR 27 #3745 | Zbl 0136.11502

[13] Nakamura (M.) and Umegaki (H.). - Heisenberg's commutation relation and the Plancherel theorem, Proc. Japan Acad., t. 37, 1961, p. 239-242. | MR 29 #3579 | Zbl 0101.09404

[14] Von Neumann (J.). - Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Annalen, t. 104, 1931, p. 570-578. | JFM 57.1446.01 | Zbl 0001.24703

[15] Takesaki (M.). - On some representations of C*-algebras, Tohoku math. J., t. 65, 1963, p. 79-95. | MR 26 #6810 | Zbl 0161.11003

[16] Takesaki (M.). - Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math., t. 119, 1967, p. 273-303. | MR 37 #774 | Zbl 0163.36802

[17] Takesaki (M.). - A characterization of group algebra as a converse of Tanneka-Stinespring-Tatsuuma duality theorem (to appear).

[18] Takesaki (M.). - A liminal crossed product of a uniformly hyperfinite C*-algebra by a compact abelian automorphism group (to appear).

[19] Turumaru (T.). - Crossed product of operator algebras, Tohoku math. J., t. 10, 1958, p. 355-365. | MR 21 #1550 | Zbl 0087.31803

[20] Zeller-Meier (G.). - Produits croisés d'une C*-algèbre par un groupe d'automorphismes (to appear).

[21] Araki (H.). - A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. math. Phys., t. 4, 1963, p. 1343-1362. | MR 28 #1889 | Zbl 0132.43805