Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
[Phénomène de vieillissement et localisation à environnement fixé pour les marches aléatoires en milieu aléatoire uni-dimensionnelles dans le régime sous-balistique]
Bulletin de la Société Mathématique de France, Tome 137 (2009) no. 3, pp. 423-452.

Nous considérons les marches aléatoires en milieu aléatoire uni-dimensionnelles, transientes et de vitesse nulle. Un phénomène de vieillissement exprimé en fonction de la loi de l’Arcsinus généralisée est prouvé en utilisant la localisation de la marche au pied de vallées de hauteur logt. Dans le cas où l’environnement est fixé, nous estimons précisément la loi de la position de la marche au temps t.

We consider transient one-dimensional random walks in a random environment with zero asymptotic speed. An aging phenomenon involving the generalized Arcsine law is proved using the localization of the walk at the foot of “valleys“ of height logt. In the quenched setting, we also sharply estimate the distribution of the walk at time t.

DOI : 10.24033/bsmf.2580
Classification : 60K37, 60G50, 60J45, 82D30
Keywords: random walks in random environment, aging, quenched localisation
Mot clés : marches aléatoires en milieu aléatoire, phénomène de vieillissement, localisation à environnement fixé
@article{BSMF_2009__137_3_423_0,
     author = {Enriquez, Nathana\"el and Sabot, Christophe and Zindy, Olivier},
     title = {Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {423--452},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {137},
     number = {3},
     year = {2009},
     doi = {10.24033/bsmf.2580},
     mrnumber = {2574090},
     zbl = {1186.60108},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2580/}
}
TY  - JOUR
AU  - Enriquez, Nathanaël
AU  - Sabot, Christophe
AU  - Zindy, Olivier
TI  - Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
JO  - Bulletin de la Société Mathématique de France
PY  - 2009
SP  - 423
EP  - 452
VL  - 137
IS  - 3
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2580/
DO  - 10.24033/bsmf.2580
LA  - en
ID  - BSMF_2009__137_3_423_0
ER  - 
%0 Journal Article
%A Enriquez, Nathanaël
%A Sabot, Christophe
%A Zindy, Olivier
%T Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime
%J Bulletin de la Société Mathématique de France
%D 2009
%P 423-452
%V 137
%N 3
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/bsmf.2580/
%R 10.24033/bsmf.2580
%G en
%F BSMF_2009__137_3_423_0
Enriquez, Nathanaël; Sabot, Christophe; Zindy, Olivier. Aging and quenched localization for one-dimensional random walks in random environment in the sub-ballistic regime. Bulletin de la Société Mathématique de France, Tome 137 (2009) no. 3, pp. 423-452. doi : 10.24033/bsmf.2580. http://archive.numdam.org/articles/10.24033/bsmf.2580/

[1] G. Ben Arous, A. Bovier & V. Gayrard - « Glauber dynamics of the random energy model. I. Metastable motion on the extreme states », Comm. Math. Phys. 235 (2003), p. 379-425. | MR | Zbl

[2] -, « Glauber dynamics of the random energy model. II. Aging below the critical temperature », Comm. Math. Phys. 236 (2003), p. 1-54. | MR | Zbl

[3] G. Ben Arous & J. Černý - « Bouchaud's model exhibits two different aging regimes in dimension one », Ann. Appl. Probab. 15 (2005), p. 1161-1192. | MR | Zbl

[4] -, « Dynamics of trap models », in Ecole d'Éte de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics”, Elsevier, 2006, p. 331-394. | MR

[5] -, « Scaling limit for trap models on d », Ann. Probab. 35 (2007), p. 2356-2384. | MR | Zbl

[6] -, « The arcsine law as a universal aging scheme for trap models », Comm. Pure Appl. Math. 61 (2008), p. 289-329. | MR | Zbl

[7] G. Ben Arous, J. Černý & T. Mountford - « Aging in two-dimensional Bouchaud's model », Probab. Theory Related Fields 134 (2006), p. 1-43. | MR | Zbl

[8] J.-P. Bouchaud - « Weak ergodicity breaking and aging in disordered systems », J. Phys. I (France) 2 (1992), p. 1705-1713.

[9] J.-P. Bouchaud, L. Cugliandolo, J. Kurchan & M. Mézard - « Out of equilibrium dynamics in spin-glasses and other glassy systems », in Spin-glasses and Random Fields, World Scientific, 1998, p. 161-224.

[10] J.-P. Bouchaud & D. S. Dean - « Aging on Parisi's tree », J. Phys. I (France) 5 (1995), p. 265-286.

[11] S. Cocco & R. Monasson - « Reconstructing a random potential from its random walks », Europhys. Lett. EPL 81 (2008), Art. 20002. | MR

[12] A. Dembo, A. Guionnet & O. Zeitouni - « Aging properties of Sinai's model of random walk in random environment », in St. Flour summer school 2001 lecture notes by O. Zeitouni, 2004, arXiv:math/0105215.

[13] N. Enriquez, C. Sabot & O. Zindy - « Limit laws for transient random walks in random environment on », Annales de l'Institut Fourier 59 (2009), p. 2469-2508. | Numdam | MR | Zbl

[14] -, « A probabilistic representation of constants in Kesten's renewal theorem », Probab. Theory Related Fields 144 (2009), p. 581-613. | MR | Zbl

[15] W. Feller - An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., 1971. | MR | Zbl

[16] L. R. G. Fontes, M. Isopi & C. M. Newman - « Random walks with strongly inhomogeneous rates and singular diffusions: convergence, localization and aging in one dimension », Ann. Probab. 30 (2002), p. 579-604. | MR | Zbl

[17] A. O. Golosov - « Localization of random walks in one-dimensional random environments », Comm. Math. Phys. 92 (1984), p. 491-506. | MR | Zbl

[18] -, « Limit distributions for random walks in random environments », Soviet Math. Dokl. 28 (1986), p. 18-22.

[19] F. D. Hollander - Large deviations, Fields Institute Monographs, vol. 14, Amer. Math. Soc., 2000. | MR | Zbl

[20] D. L. Iglehart - « Extreme values in the GI/G/1 queue », Ann. Math. Statist. 43 (1972), p. 627-635. | MR | Zbl

[21] H. Kesten - « The limit distribution of Sinaĭ's random walk in random environment », Phys. A 138 (1986), p. 299-309. | MR | Zbl

[22] H. Kesten, M. V. Kozlov & F. Spitzer - « A limit law for random walk in a random environment », Compositio Math. 30 (1975), p. 145-168. | Numdam | MR | Zbl

[23] P. Le Doussal, C. Monthus & D. S. Fisher - « Random walkers in one-dimensional random environments: exact renormalization group analysis », Phys. Rev. E 59 (1999), p. 4795-4840. | MR

[24] J. Peterson & O. Zeitouni - « Quenched limits for transient, zero speed one-dimensional random walk in random environment », Ann. Probab. 37 (2009), p. 143-188. | MR | Zbl

[25] Y. G. Sinaĭ - « The limit behavior of a one-dimensional random walk in a random environment », Teor. Veroyatnost. i Primenen. 27 (1982), p. 247-258. | MR | Zbl

[26] F. Solomon - « Random walks in a random environment », Ann. Probab. 3 (1975), p. 1-31. | MR | Zbl

[27] O. Zeitouni - « Random walks in random environment », in Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1837, Springer, 2004, p. 189-312. | MR | Zbl

Cité par Sources :