A topological interpretation of second-order intuitionistic arithmetic
Compositio Mathematica, Tome 26 (1973) no. 3, pp. 261-275.
@article{CM_1973__26_3_261_0,
     author = {Moschovakis, Joan Rand},
     title = {A topological interpretation of second-order intuitionistic arithmetic},
     journal = {Compositio Mathematica},
     pages = {261--275},
     publisher = {Noordhoff International Publishing},
     volume = {26},
     number = {3},
     year = {1973},
     mrnumber = {357076},
     zbl = {0279.02018},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1973__26_3_261_0/}
}
TY  - JOUR
AU  - Moschovakis, Joan Rand
TI  - A topological interpretation of second-order intuitionistic arithmetic
JO  - Compositio Mathematica
PY  - 1973
SP  - 261
EP  - 275
VL  - 26
IS  - 3
PB  - Noordhoff International Publishing
UR  - http://archive.numdam.org/item/CM_1973__26_3_261_0/
LA  - en
ID  - CM_1973__26_3_261_0
ER  - 
%0 Journal Article
%A Moschovakis, Joan Rand
%T A topological interpretation of second-order intuitionistic arithmetic
%J Compositio Mathematica
%D 1973
%P 261-275
%V 26
%N 3
%I Noordhoff International Publishing
%U http://archive.numdam.org/item/CM_1973__26_3_261_0/
%G en
%F CM_1973__26_3_261_0
Moschovakis, Joan Rand. A topological interpretation of second-order intuitionistic arithmetic. Compositio Mathematica, Tome 26 (1973) no. 3, pp. 261-275. http://archive.numdam.org/item/CM_1973__26_3_261_0/

S.C. Kleene and R.E. Vesley [1] The Foundations of intuitionistic mathematics, Amsterdam (North-Holland), 1965. | MR | Zbl

G. Kreisel and A.S. Troelstra [2] Formal systems for some branches of intuitionistic analysis, Annals of mathematical logic, Vol. 1 (1970), pp. 229-387. | MR | Zbl

G. Kreisel [3] Informal rigour and completeness proofs, in Problems in the philosophy of mathematics, ed. I. LAKATOS, Amsterdam (North-Holland), 1967, pp. 138-171, with following discussion.

J.R. Moschovakis [4] Disjunction, existence, and λ-definability in formalized intuitionistic analysis, Ph. D. Thesis, University of Wisconsin, 1965.

J. Myhill [5] Formal systems of intuitionistic analysis I, in Logic, methodology and philosophy of science III, eds. B. van Rootselaar and J. F. Staal, Amsterdam (North-Holland), 1968, pp. 161-178. | MR | Zbl

H. Rasiowa and R. Sikorski [6] The mathematics of metamathematics, Warsaw, 1963. | MR | Zbl

D. Scott [7] Extending the topological interpretation to intuitionistic analysis, Compositio Mathematica 20 (1968), pp. 194-210. | Numdam | MR | Zbl

D. Scott [8] Extending the topological interpretation to intuitionistic analysis II, in Intuitionism and proof theory, eds. J. Myhill, A. Kino and R. Vesley, Amsterdam (North-Holland), 1970, pp. 235-255. | MR | Zbl

[9] A.S. Troelstra Notes on the intuitionistic theory of sequences (I), Indag. Math. 31, No. 5 (1969). | MR | Zbl