A topological interpretation of second-order intuitionistic arithmetic
Compositio Mathematica, Volume 26 (1973) no. 3, p. 261-275
@article{CM_1973__26_3_261_0,
     author = {Moschovakis, Joan Rand},
     title = {A topological interpretation of second-order intuitionistic arithmetic},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {26},
     number = {3},
     year = {1973},
     pages = {261-275},
     zbl = {0279.02018},
     mrnumber = {357076},
     language = {en},
     url = {http://www.numdam.org/item/CM_1973__26_3_261_0}
}
Moschovakis, Joan Rand. A topological interpretation of second-order intuitionistic arithmetic. Compositio Mathematica, Volume 26 (1973) no. 3, pp. 261-275. http://www.numdam.org/item/CM_1973__26_3_261_0/

S.C. Kleene and R.E. Vesley [1] The Foundations of intuitionistic mathematics, Amsterdam (North-Holland), 1965. | MR 176922 | Zbl 0133.24601

G. Kreisel and A.S. Troelstra [2] Formal systems for some branches of intuitionistic analysis, Annals of mathematical logic, Vol. 1 (1970), pp. 229-387. | MR 263609 | Zbl 0211.01101

G. Kreisel [3] Informal rigour and completeness proofs, in Problems in the philosophy of mathematics, ed. I. LAKATOS, Amsterdam (North-Holland), 1967, pp. 138-171, with following discussion.

J.R. Moschovakis [4] Disjunction, existence, and λ-definability in formalized intuitionistic analysis, Ph. D. Thesis, University of Wisconsin, 1965.

J. Myhill [5] Formal systems of intuitionistic analysis I, in Logic, methodology and philosophy of science III, eds. B. van Rootselaar and J. F. Staal, Amsterdam (North-Holland), 1968, pp. 161-178. | MR 252204 | Zbl 0202.00601

H. Rasiowa and R. Sikorski [6] The mathematics of metamathematics, Warsaw, 1963. | MR 163850 | Zbl 0122.24311

D. Scott [7] Extending the topological interpretation to intuitionistic analysis, Compositio Mathematica 20 (1968), pp. 194-210. | Numdam | MR 228331 | Zbl 0197.00201

D. Scott [8] Extending the topological interpretation to intuitionistic analysis II, in Intuitionism and proof theory, eds. J. Myhill, A. Kino and R. Vesley, Amsterdam (North-Holland), 1970, pp. 235-255. | MR 274260 | Zbl 0213.01203

[9] A.S. Troelstra Notes on the intuitionistic theory of sequences (I), Indag. Math. 31, No. 5 (1969). | MR 258597 | Zbl 0188.31603