@article{CM_1973__27_2_213_0, author = {Kalton, N. J.}, title = {On the weak-basis theorem}, journal = {Compositio Mathematica}, pages = {213--215}, publisher = {Noordhoff International Publishing}, volume = {27}, number = {2}, year = {1973}, mrnumber = {350385}, zbl = {0269.46012}, language = {en}, url = {http://archive.numdam.org/item/CM_1973__27_2_213_0/} }
Kalton, N. J. On the weak-basis theorem. Compositio Mathematica, Tome 27 (1973) no. 2, pp. 213-215. http://archive.numdam.org/item/CM_1973__27_2_213_0/
[1] Weak bases in (F)- and (LF)-spaces, J. London Math. Soc. (1) 44 (1969) 505-508. | MR | Zbl
and ,[2] Properties of bases in spaces of type B0, Prace Mat. 3 (1959) 123-142 (Polish). | MR | Zbl
and ,[3] Sur les applications linéaires faiblement compactes d'espaces du type C(K), Can. J. Math. 5 (1953) 129-173. | MR | Zbl
,[4] Concrete representation of abstract (L)-spaces and the mean ergodic theorem, Ann. Math. (2) 42 (1941) 523-537. | JFM | MR | Zbl
,[5] Concrete representation of abstract (M)-spaces, Ann. Math. (2) 42 (1941) 994-1024. | MR | Zbl
,[6] On the weak basis theorem, Coll. Math. 17 (1967) 71-76. | MR | Zbl
,[7] Weak*-bases in conjugate Banach spaces, Stud. Math. 21 (1961) 75-81. | MR | Zbl
,[8] Bases in Banach spaces I, Springer-Verlag, Berlin 1970. | MR | Zbl
,