The heredity problem for weakly compactly generated Banach spaces
Compositio Mathematica, Tome 28 (1974) no. 1, p. 83-111
@article{CM_1974__28_1_83_0,
     author = {Rosenthal, Haskell P.},
     title = {The heredity problem for weakly compactly generated Banach spaces},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {28},
     number = {1},
     year = {1974},
     pages = {83-111},
     zbl = {0298.46013},
     mrnumber = {417762},
     language = {en},
     url = {http://www.numdam.org/item/CM_1974__28_1_83_0}
}
Rosenthal, Haskell P. The heredity problem for weakly compactly generated Banach spaces. Compositio Mathematica, Tome 28 (1974) no. 1, pp. 83-111. http://www.numdam.org/item/CM_1974__28_1_83_0/

[1] D. Amir and J. Lindenstrauss: The structure of weakly compact sets in Banach spaces. Ann. of Math. 88 (1968) 35-46. | MR 228983 | Zbl 0164.14903

[2] H.H. Corson: The weak topology of a Banach space. Trans. Amer. Math. Soc., 101 (1961) 1-15. | MR 132375 | Zbl 0104.08502

[3] H.H. Corson and E. Michael: Metrizability of certain countable unions, Ill. J. Math. 8 (1964) 351-360. | MR 170324 | Zbl 0127.13203

[4] W. Davis, T. Figiel, W. Johnson, and A. Pelozynski: Factoring weakly compact operators (to appear). | Zbl 0306.46020

[5] N. Dunford and J.T. Schwartz: Linear Operators, Part I. New York, Interscience, 1958. | MR 117523 | Zbl 0084.10402

[6] D. Friedland: On closed subspaces of weakly compactly generated Banach spaces. Submitted to Israel J. Math.

[7] A. Grothendieck: Sur les applications linéaires faiblement compactes d'espaces du type C(K). Canad. J. Math., 5 (1953) 129-173. | MR 58866 | Zbl 0050.10902

[8] K. John and V. Zizler: Projections in dual weakly compactly generated Banach spaces (to appear) Studia Math. | MR 336295 | Zbl 0247.46029

[9] -: Smoothness and its equivalents in weakly compactly generated Banach spaces (to appear) J. Funct. Anal. | Zbl 0272.46012

[10] M.I. Kadec and A. Pelczynski: Bases, lacunary sequences, and complemented subspaces in the spaces Lp. Studia Math. 21 (1962) 161-176. | Zbl 0102.32202

[11] J. Lindenstrauss: On a theorem of Murray and Mackey. Anais de Acad. Brasileira Cien. 39 (1967) 1-6. | MR 226366 | Zbl 0153.44201

[12] -: Weakly compact sets - their topological properties and the Banach spaces they generate. Annals of Mathematics Studies 69, Princeton Univ. Press (1972) 235-273. | Zbl 0232.46019

[13] W. Johnson and J. Lindenstrauss: Some remarks on weakly compactly generated Banach spaces (to appear) Israel J. Math. | MR 417760 | Zbl 0306.46021

[14] H.P. Rosenthal: On injective Banach spaces and the spaces L∞(μ) for finite measures μ. Acta. Math. 124 (1970) 205-248. | Zbl 0207.42803

[15] -: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from Lp(μ) to Lr(μ). J. Funct. Anal. 2 (1969) 176-214. | Zbl 0185.20303

[16] -: On relatively disjoint families of measures, with some applications to Banach space theory. Studia Math. 37 (1970) 13-36. | Zbl 0227.46027

[17] -: On the subspaces of Lp(p > 2) spanned by independent random variables. Israel J. Math. 8 (1970) 273-303. | Zbl 0213.19303

[18] -: On the span in Lp of sequences of independent random variables (II). Berkeley Symposium on Mathematics, Statistics, and Probability, Vol. II (1972) 149-167. | Zbl 0255.60003

[19] W. Sierpinski: Cardinal and Ordinal Numbers. Warsaw, Monografje Matematijczne, 1958. | MR 95787 | Zbl 0083.26803

[20] S.L. Troyanski: Equivalent norms and minimal systems in non-separable Banach spaces. Studia Math. 43 (1972) 125-138. | MR 324382 | Zbl 0255.46012