@article{CM_1977__34_3_225_0, author = {Lubkin, Saul}, title = {Generalization of $p$-adic cohomology ; bounded {Witt} vectors. {A} canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero}, journal = {Compositio Mathematica}, pages = {225--277}, publisher = {Noordhoff International Publishing}, volume = {34}, number = {3}, year = {1977}, zbl = {0368.14009}, mrnumber = {453745}, language = {en}, url = {http://archive.numdam.org/item/CM_1977__34_3_225_0/} }
TY - JOUR AU - Lubkin, Saul TI - Generalization of $p$-adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero JO - Compositio Mathematica PY - 1977 DA - 1977/// SP - 225 EP - 277 VL - 34 IS - 3 PB - Noordhoff International Publishing UR - http://archive.numdam.org/item/CM_1977__34_3_225_0/ UR - https://zbmath.org/?q=an%3A0368.14009 UR - https://www.ams.org/mathscinet-getitem?mr=453745 LA - en ID - CM_1977__34_3_225_0 ER -
Lubkin, Saul. Generalization of $p$-adic cohomology ; bounded Witt vectors. A canonical lifting of a variety in characteristic $p \ne 0$ back to characteristic zero. Compositio Mathematica, Tome 34 (1977) no. 3, pp. 225-277. http://archive.numdam.org/item/CM_1977__34_3_225_0/
[1] A p-Adic Proof of Weil's Conjectures. Annals of Mathematics, 87, Nos. 1-2, Jan-March, 1968, 105-255. | MR 224616 | Zbl 0188.53004
:[2] Generalization of p-adic Cohomology (to appear).
:[3] Zyklische Körper und Algebren der Charackteristik p von Grade pn. J. Reine angew. Math., 176 (1936) 126-140. | Zbl 0016.05101
: