@article{CM_1977__35_1_3_0, author = {Feferman, Solomon}, title = {Recursion in total functionals of finite type}, journal = {Compositio Mathematica}, pages = {3--22}, publisher = {Noordhoff International Publishing}, volume = {35}, number = {1}, year = {1977}, mrnumber = {485282}, zbl = {0365.02030}, language = {en}, url = {http://archive.numdam.org/item/CM_1977__35_1_3_0/} }
Feferman, Solomon. Recursion in total functionals of finite type. Compositio Mathematica, Tome 35 (1977) no. 1, pp. 3-22. http://archive.numdam.org/item/CM_1977__35_1_3_0/
[1] Ordinals and functionals in proof theory. Proc. Int'l. Cong. of Mathematicians (Nice, 1970) 1, 229-233. | MR | Zbl
:[2] Über einer bisher noch nicht benützten Erweiterung des finiten Standpunktes. Dialectica 12 (1958) 280-287. | MR | Zbl
:[3] Selection functions for recursive functionals. Notre Dame J. Formal Logic 10 (1969) 225-234. | MR | Zbl
:[4] Selection in abstract recursion theory. J. Symbolic Logic 41 (1976) 153-158. | MR | Zbl
and :[5] Countable functionals, in Constructivity in Mathematics, N-H, Amsterdam (1959) 81-100. | MR | Zbl
:[6] Recursive functionals and quantifiers of finite types. Trans. Amer. Math. Soc. 91 (1959) 1-52. | MR | Zbl
:[7] Some reasons for generalizing recursion theory, in Logic Colloquium '69, N-H, Amsterdam (1971) 139-198. | MR | Zbl
:[8] Post's problem for recursion in higher types. Dissertation, M.I.T. (1972).
:[9] Hyperanalytic predicates. Trans. Amer. Math. Soc. 129 (1967) 249-282. | MR | Zbl
:[10] Abstract first order computability. Trans. Amer. Math. Soc. 138 (1969) I. 427-464, II. 465-504. | MR | Zbl
:[11] Foundations of recursion theory. Dissertation, Stanford Univ. (1966).
:[12] The 1-section of a type n object, in Generalized Recursion Theory (eds. Fenstad, Hinman), Amsterdam (1974) 81-93. | MR | Zbl
:[13] A hierarchy based on a type 2 object. Trans. Amer. Math. Soc. 134 (1968) 103-108. | MR | Zbl
:[14] Infinitely long terms of transfinite type, in Formal Systems and Recursive Functions, N-H, Amsterdam (1968) 465-475.
:[15] A hierarchy for the 1-section of any type two object, J. Symbolic Logic 39 (1974) 88-94. | MR | Zbl
:[16] Infinite terms and recursion in higher types. Kiel Proof Theory Symposion, 1974. Lecture Notes in Mathematics V. 500 (1975) (Springer, Berlin) 341-364. | MR | Zbl
and :