A finiteness theorem for the burnside ring of a compact Lie group
Compositio Mathematica, Volume 35 (1977) no. 1, p. 91-97
@article{CM_1977__35_1_91_0,
     author = {Dieck, Tammo Tom},
     title = {A finiteness theorem for the burnside ring of a compact Lie group},
     journal = {Compositio Mathematica},
     publisher = {Noordhoff International Publishing},
     volume = {35},
     number = {1},
     year = {1977},
     pages = {91-97},
     zbl = {0354.57007},
     mrnumber = {474344},
     language = {en},
     url = {http://www.numdam.org/item/CM_1977__35_1_91_0}
}
Dieck, Tammo Tom. A finiteness theorem for the burnside ring of a compact Lie group. Compositio Mathematica, Volume 35 (1977) no. 1, pp. 91-97. http://www.numdam.org/item/CM_1977__35_1_91_0/

[1] M.F. Atiyah and I.G. Macdonald: Introduction to Commutative Algebra. Addison-Wesley Publ. Comp. 1969. | MR 242802 | Zbl 0175.03601

[2] W. Boothby and H.-C. Wang: On the finite subgroups of connected Lie groups. Comment. Math. Helv. 39 (1964) 281-294. | MR 180622 | Zbl 0138.03001

[3] A. Borel et J.-P. Serre: Sur certain sous groupes des groupes de Lie compacts. Comment. Math. Helv. 27 (1953) 128-139. | MR 54612 | Zbl 0051.01902

[4] A. Borel et J. De Siebenthal: Les sous-groupes fermès de rang maximum des groupes de Lie clos. Comment. Math. Helv. 23 (1949) 200-221. | MR 32659 | Zbl 0034.30701

[5] N. Bourbaki: Algèbre commutative, Chapitre 2. Hermann, Paris 1961. | Zbl 0108.04002

[6] T. Tom Dieck: The Burnside Ring of a Compact Lie Group I. Math. Ann. 215 (1975) 235-250. | MR 394711 | Zbl 0313.57030

[7] A. Dress: Contributions to the theory of induced representations. Springer Lecture Notes 342, (1973) 183-240. | MR 384917 | Zbl 0331.18016

[8] Seminar on Transformation Groups. Ed. A. Borel et al. Princeton University Press 1960. | MR 116341 | Zbl 0091.37202

[9] J.A. Wolf: Spaces of Constant Curvature. McGraw-Hill, New York 1967. | MR 217740 | Zbl 0162.53304