@article{CM_1978__36_1_75_0, author = {Van Mill, J.}, title = {A pseudo-interior of $\lambda I$}, journal = {Compositio Mathematica}, pages = {75--82}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {36}, number = {1}, year = {1978}, zbl = {0389.54016}, language = {en}, url = {http://archive.numdam.org/item/CM_1978__36_1_75_0/} }
Van Mill, J. A pseudo-interior of $\lambda I$. Compositio Mathematica, Volume 36 (1978) no. 1, pp. 75-82. http://archive.numdam.org/item/CM_1978__36_1_75_0/
[1] On topological infinite deficiency. Mich. Math. J., 14 (1967) 365-383. | MR | Zbl
:[2] On sigma-compact subsets of infinite dimensional spaces. Trans. Amer. Math. Soc. (to appear).
:[3] 2X and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc., 80 (1974) 927-931. | MR | Zbl
and[4] Superextensions and supercompactness. Proc. I. Intern. Symp. on extension theory of topological structures and its applications (VEB Deutscher Verlag Wiss., Berlin 1967), 89-90. | Zbl
,[5] Superextensions, Report Mathematical Centre ZW 1968-017, Amsterdam, 1968. | MR | Zbl
, and ,[6] Pseudo-interiors of hyperspaces (to appear). | Numdam | MR | Zbl
,[7] The superextension of the closed unit interval is homeomorphic to the Hilbert cube, rapport 48, Department of Mathematics, Free University, Amsterdam (1976) (to appear in Fund. Math.). | MR
,[8] 2I is homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc., 78 (1972) 402-406. | MR | Zbl
and ,[9] Superextensions of topological spaces, Mathematical Centre tracts, 41, Mathematisch Centrum, Amsterdam (1972). | MR | Zbl
,