A pseudo-interior of λI
Compositio Mathematica, Volume 36 (1978) no. 1, pp. 75-82.
@article{CM_1978__36_1_75_0,
     author = {Van Mill, J.},
     title = {A pseudo-interior of $\lambda I$},
     journal = {Compositio Mathematica},
     pages = {75--82},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {36},
     number = {1},
     year = {1978},
     zbl = {0389.54016},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1978__36_1_75_0/}
}
TY  - JOUR
AU  - Van Mill, J.
TI  - A pseudo-interior of $\lambda I$
JO  - Compositio Mathematica
PY  - 1978
SP  - 75
EP  - 82
VL  - 36
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://archive.numdam.org/item/CM_1978__36_1_75_0/
LA  - en
ID  - CM_1978__36_1_75_0
ER  - 
%0 Journal Article
%A Van Mill, J.
%T A pseudo-interior of $\lambda I$
%J Compositio Mathematica
%D 1978
%P 75-82
%V 36
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://archive.numdam.org/item/CM_1978__36_1_75_0/
%G en
%F CM_1978__36_1_75_0
Van Mill, J. A pseudo-interior of $\lambda I$. Compositio Mathematica, Volume 36 (1978) no. 1, pp. 75-82. http://archive.numdam.org/item/CM_1978__36_1_75_0/

[1] R.D. Anderson: On topological infinite deficiency. Mich. Math. J., 14 (1967) 365-383. | MR | Zbl

[2] R.D. Anderson: On sigma-compact subsets of infinite dimensional spaces. Trans. Amer. Math. Soc. (to appear).

[3] D.W. Curtis and R.M. Schori 2X and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc., 80 (1974) 927-931. | MR | Zbl

[4] J. De Groot, Superextensions and supercompactness. Proc. I. Intern. Symp. on extension theory of topological structures and its applications (VEB Deutscher Verlag Wiss., Berlin 1967), 89-90. | Zbl

[5] J. De Groot, G.A. Jensen and A. Verbeek, Superextensions, Report Mathematical Centre ZW 1968-017, Amsterdam, 1968. | MR | Zbl

[6] N. Kroonenberg, Pseudo-interiors of hyperspaces (to appear). | Numdam | MR | Zbl

[7] J. Van Mill, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, rapport 48, Department of Mathematics, Free University, Amsterdam (1976) (to appear in Fund. Math.). | MR

[8] R. Schori and J.E. West, 2I is homeomorphic to the Hilbert cube, Bull. Amer. Math. Soc., 78 (1972) 402-406. | MR | Zbl

[9] A. Verbeek, Superextensions of topological spaces, Mathematical Centre tracts, 41, Mathematisch Centrum, Amsterdam (1972). | MR | Zbl