On the essential height of homotopy trees with finite fundamental group
Compositio Mathematica, Volume 36 (1978) no. 2, pp. 209-224.
@article{CM_1978__36_2_209_0,
     author = {Dyer, Micheal N.},
     title = {On the essential height of homotopy trees with finite fundamental group},
     journal = {Compositio Mathematica},
     pages = {209--224},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {36},
     number = {2},
     year = {1978},
     mrnumber = {515046},
     zbl = {0375.55008},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1978__36_2_209_0/}
}
TY  - JOUR
AU  - Dyer, Micheal N.
TI  - On the essential height of homotopy trees with finite fundamental group
JO  - Compositio Mathematica
PY  - 1978
SP  - 209
EP  - 224
VL  - 36
IS  - 2
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://archive.numdam.org/item/CM_1978__36_2_209_0/
LA  - en
ID  - CM_1978__36_2_209_0
ER  - 
%0 Journal Article
%A Dyer, Micheal N.
%T On the essential height of homotopy trees with finite fundamental group
%J Compositio Mathematica
%D 1978
%P 209-224
%V 36
%N 2
%I Sijthoff et Noordhoff International Publishers
%U http://archive.numdam.org/item/CM_1978__36_2_209_0/
%G en
%F CM_1978__36_2_209_0
Dyer, Micheal N. On the essential height of homotopy trees with finite fundamental group. Compositio Mathematica, Volume 36 (1978) no. 2, pp. 209-224. http://archive.numdam.org/item/CM_1978__36_2_209_0/

[1] W. Cockcroft and R.M.F. Moss: On the two-dimensional realisability of chain complexes. Jour. London Math. Soc., 11 (1975) 257-262. | MR | Zbl

[2] M.N. Dyer, On the 2-realizability of 2-types, Trans. Amer. Math. Soc., vol. 204 (1975), 229-243. | MR | Zbl

[3] M.N. Dyer, Homotopy classification of (π, m )-complexes, Jour. Pure and Applied Algebra, 7 (1976), 249-282. | Zbl

[4] M.N. Dyer, Homotopy trees: essential height and roots, Ill. Jour. Math., 20 (1976), 306-313. | MR | Zbl

[5] M.N. Dyer, Non-minimal roots in homotopy trees, preprint.

[6] S. Maclane, Homology, Springer-Verlag, Berlin, 1963. | MR | Zbl

[7] S. Maclane, and J.H.C. Whitehead, On the 3-type of a complex, Proc. Nat. Acad. Sci.U.S.A., vol. 36 (1950), 41-48. | MR | Zbl

[8] W. Metzler, Uber den Homotopietyp zweidimensionaler CW-Komplexe und Elementartransformationen bei Darstellungen von Gruppen durch Erzeugende und definierende Relationen, to appear in the Journal fur die Reine und Angewandte Mathematik. | MR | Zbl

[9] A.J. Sieradski, A semigroup of simple homotopy types. Math. Zeit., 153 (1977), 135-148. | MR | Zbl

[10] R.G. Swan, Periodic resolutions for finite groups, Ann. Math. 72 (1960), 267-291. | MR | Zbl

[11] R.G. Swan, Minimal resolutions for finite groups, Topology 4 (1965), 193-208. | MR | Zbl

[12] R.G. Swan, K-theory of finite groups and orders, Lecture notes in mathematics, 149 (Springer-Verlag, Berlin, 1970). | MR | Zbl

[13] R.G. Swan, Projective modules over group rings and maximal orders, Ann. Math., 76 (1962), 55-61. | MR | Zbl

[14] C.T.C. Wall, Finiteness conditions for CW-complexes I, Ann. Math., 81 (1965), 56-69. | MR | Zbl

[15] J.S. Williams, Free presentations and relation modules of finite groups, Jour. Pure and Applied Algebra, 3 (1973), 203-217. | MR | Zbl