@article{CM_1980__40_2_139_0, author = {Curtis, D. W.}, title = {Hyperspaces of noncompact metric spaces}, journal = {Compositio Mathematica}, pages = {139--152}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {40}, number = {2}, year = {1980}, mrnumber = {563538}, zbl = {0431.54004}, language = {en}, url = {http://archive.numdam.org/item/CM_1980__40_2_139_0/} }
Curtis, D. W. Hyperspaces of noncompact metric spaces. Compositio Mathematica, Tome 40 (1980) no. 2, pp. 139-152. http://archive.numdam.org/item/CM_1980__40_2_139_0/
[1] Hilbert space is homeomorphic to the countable infinite product of lines. Bull. Amer. Math. Soc. 72 (1966) 515-519. | MR | Zbl
:[2] On sigma-compact subsets of infinite-dimensional spaces, (unpublished manuscript).
:[3] Notices Amer. Math. Soc. 22 (1975) 75T-G118 and 23 (1976), 731-54-10.
:[4] Growth hyperspaces of Peano continua. Trans. Amer. Math. Soc. 238 (1978) 271-283. | MR | Zbl
:[5] Hyperspaces homeomorphic to Hilbert space. Proc. Amer. Math. Soc. 75 (1979) 126-130. | MR | Zbl
:[6] 2X and C(X) are homeomorphic to the Hilbert cube. Bull. Amer. Math. Soc. 80 (1974) 927-931. | MR | Zbl
and :[7] Hyperspaces which characterize simple homotopy type. Gen. Top. and its Applications 6 (1976) 153-165. | MR | Zbl
and :[8] Hyperspaces of Peano continua are Hilbert cubes. Fund. Math. 101 (1978) 19-38. | MR | Zbl
and :[9] Absolute neighborhood retracts and local connectedness in arbitrary metric spaces. Comp. Math. 13 (1958) 229-246. | Numdam | MR | Zbl
:[10] Topology. Addison-Wesley, 1961, Reading, Mass. | MR | Zbl
and :[11] Hyperspaces of a continuum. Trans. Amer. Math. Soc. 52 (1942) 22-36. | MR | Zbl
:[12] Pseudo-interiors of hyperspaces. Comp. Math. 32 (1976) 113-131. | Numdam | MR | Zbl
:[13] On the connectedness of hyperspaces Soviet Math. Dokl. 15 (1974) 502-504. | MR | Zbl
:[14] Characterizing Hilbert space topology (preprint). | MR | Zbl
:[15] Retractes absolus et hyperespaces des continus. Fund. Math. 32 (1939) 184-192. | JFM | Zbl
: