On singular complex surfaces with vanishing geometric genus, and pararational singularities
Compositio Mathematica, Volume 43 (1981) no. 3, pp. 297-315.
@article{CM_1981__43_3_297_0,
     author = {Brenton, Lawrence},
     title = {On singular complex surfaces with vanishing geometric genus, and pararational singularities},
     journal = {Compositio Mathematica},
     pages = {297--315},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {43},
     number = {3},
     year = {1981},
     mrnumber = {632431},
     zbl = {0467.32015},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1981__43_3_297_0/}
}
TY  - JOUR
AU  - Brenton, Lawrence
TI  - On singular complex surfaces with vanishing geometric genus, and pararational singularities
JO  - Compositio Mathematica
PY  - 1981
SP  - 297
EP  - 315
VL  - 43
IS  - 3
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://archive.numdam.org/item/CM_1981__43_3_297_0/
LA  - en
ID  - CM_1981__43_3_297_0
ER  - 
%0 Journal Article
%A Brenton, Lawrence
%T On singular complex surfaces with vanishing geometric genus, and pararational singularities
%J Compositio Mathematica
%D 1981
%P 297-315
%V 43
%N 3
%I Sijthoff et Noordhoff International Publishers
%U http://archive.numdam.org/item/CM_1981__43_3_297_0/
%G en
%F CM_1981__43_3_297_0
Brenton, Lawrence. On singular complex surfaces with vanishing geometric genus, and pararational singularities. Compositio Mathematica, Volume 43 (1981) no. 3, pp. 297-315. http://archive.numdam.org/item/CM_1981__43_3_297_0/

[1] S. Abhyankar: Quasirational singularities. Amer. J. Math. 101 (1979) 267-300. | MR | Zbl

[2] M. Artin: Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math. 84 (1962) 485-496. | MR | Zbl

[3] M. Artin: On isolated rational singularities of surfaces. Am. J. Math. 88 (1966) 129-136. | MR | Zbl

[4] H. Bass: On the ubiquity of Gorenstein rings. Math. Z. 82 (1963) 8-28. | MR | Zbl

[5] E. Bombieri: The pluricanonical map of a complex surface, Several Complex Variables I, Proc. of the International Math. Conf., College Park, Maryland (1970) 35-87. | MR | Zbl

[6] E. Bombieri and D. Husemoller: Classifications and embeddings of surfaces, Proc. of Symposia in Pure Math. 29, Algebraic Geometry, Azcata, 1974. | MR | Zbl

[7] L. Brenton: A Riemann-Roch theorem for singular surfaces, notes prepared for the Sonderforschungsbereich Theoretische Math., Univ. Bonn, Bonn, 1975.

[8] L. Brenton: Some algebraicity criteria for singular surfaces. Inv. Math. 41 (1977) 129-147. | MR | Zbl

[9] L. Brenton: Some examples of singular compact analytic surfaces which are homotopy equivalent to the complex projective plane. Topology 16 (1977) 423-433. | MR | Zbl

[10] L. Brenton: On singular complex surfaces with negative canonical bundle, with applications to singular compactifications of C2 and to 3-dimensional rational singularities. Math. Ann. 248 (1980) 117-124. | MR | Zbl

[11] D. Burns and J. Wahl: Local contributions to global deformations of surfaces. Inv. math. 26 (1974) 67-88. | MR | Zbl

[12] A. Durfee: Fifteen characterizations of rational double points and simple critical points. Enseign. Math. (2) 25 (1979) no. 1-2, 131-163. | MR | Zbl

[13] P. Duval: On isolated singularities of surfaces which do not affect the condition of adjunction. Proc. Cambridge Philos. Soc. 30 (1933/34) 453-491. | JFM

[14] H. Grauert: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146 (1962) 331-368. | MR | Zbl

[15] F. Hirzebruch: The Hilbert modular group, resolutions of singularities at the cusps and related problems. Sem. N. Bourbaki (1970/71) Exp. 396. | Numdam | MR | Zbl

[16] F. Hirzebruch: Hilbert modular surfaces. Enseignement Math. (2) 19 (1973) 183-281. | MR | Zbl

[17] M. Hochster: Cohen-Macaulay rings, combinatorics, and simplicial complexes, Proc. 2nd Oklahoma Ring Theory Conf. (March, 1976), Marcel Dekker, New York, 1977, 171-223. | MR | Zbl

[18] M. Inoue: On surfaces of type VII0. Inv. Math. 24 (1974) 269-310. | Zbl

[19] M. Inoue: An example of surfaces with b1 = 1. Global Analysis, a collection of papers dedicated to K. Kodaira, Iwanami Shoten, Tokyo (1973), 83-98.

[20] K. Kodaira: On the structure of compact complex analytic surfaces, I-IV. Amer. J. Math. 86 (1964) 751-798; 88 (1966) 682-721; 90 (1968) 55-83 and 1048-1065. | MR | Zbl

[21] H. Laufer: Normal two-dimensional singularities. Annals of Math. Studies no. 71, Princeton Univ. Press, Princeton, 1971. | MR | Zbl

[22] H. Laufer: On rational singularities. Amer. J. Math. 94 (1972) 597-608. | MR | Zbl

[23] H. Laufer: Taut two-dimensional singularities. Math. Ann. 205 (1973) 131-164. | MR | Zbl

[24] H. Laufer: On μ for surface singularities. Proc. Sym. Pure Math. 30 (several complex variables), Amer. Math. Soc., Providence (1977) 45-49. | Zbl

[25] H. Laufer: On minimally elliptic singularities. Amer. J. Math. 99 (1977) 1257-1295. | MR | Zbl

[26] J. Milnor: Singular points of complex hypersurfaces, Annals of Math. Studies no. 61, Princeton Univ. Press, Princeton (1968). | MR | Zbl

[27] P. Wagreich: Elliptic singularities of surfaces. Amer. J. Math. 92 (1970) 419-454. | MR | Zbl