Stickelberger elements in function fields
Compositio Mathematica, Tome 55 (1985) no. 2, pp. 209-239.
@article{CM_1985__55_2_209_0,
     author = {Hayes, David R.},
     title = {Stickelberger elements in function fields},
     journal = {Compositio Mathematica},
     pages = {209--239},
     publisher = {Martinus Nijhoff Publishers},
     volume = {55},
     number = {2},
     year = {1985},
     mrnumber = {795715},
     zbl = {0569.12008},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1985__55_2_209_0/}
}
TY  - JOUR
AU  - Hayes, David R.
TI  - Stickelberger elements in function fields
JO  - Compositio Mathematica
PY  - 1985
SP  - 209
EP  - 239
VL  - 55
IS  - 2
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1985__55_2_209_0/
LA  - en
ID  - CM_1985__55_2_209_0
ER  - 
%0 Journal Article
%A Hayes, David R.
%T Stickelberger elements in function fields
%J Compositio Mathematica
%D 1985
%P 209-239
%V 55
%N 2
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1985__55_2_209_0/
%G en
%F CM_1985__55_2_209_0
Hayes, David R. Stickelberger elements in function fields. Compositio Mathematica, Tome 55 (1985) no. 2, pp. 209-239. http://archive.numdam.org/item/CM_1985__55_2_209_0/

[1] J. Coates: B-adic L-functions and Iwasawa's theory. A. Frölich (ed.), Algebraic Number Fields. London: Academic Press (1977) 269-353. | MR | Zbl

[2] V.G. Drinfeld: Elliptic Modules (Russian). Math. Sbornik 94 (1974) 594-627 = Math. USSR Sbornik 23 (1974) 561-592. | MR | Zbl

[3] S. Galovich and M. Rosen: The class number of cyclotomic function fields: J. Number Theory 13 (1981) 363-375. | MR | Zbl

[4] S. Galovich and M. Rosen: Units and class groups in cyclotomic functions fields. J. Number Theory 14 (1982) 156-184. | MR | Zbl

[5] S. Galovich and M. Rosen: Distributions on Rational Function Fields. Math. Annalen 256 (1981) 549-60. | MR | Zbl

[6] D. Goss: The Γ-ideal and special zeta values, Duke Journal (1980) 345-364. | Zbl

[7] D. Goss: On a new type of L-function for algebraic curves over finite fields. Pacific Journal 105 (1983) 143-181. | MR | Zbl

[8] B. Gross: The annihilation of divisor classes in abelian extensions of the rational function field. Séminaire de Théorie des Nombres(Bordeaux 1980-81), exposé no. 3. | Zbl

[9] D. Hayes: Explicit class field theory for rational function fields. Trans. Amer. Math. Soc. 189 (1974) 77-91. | MR | Zbl

[10] D. Hayes: Explicit class field theory in global function fields. G.C. Rota (ed.), Studies in Algebra and Number Theory. New York: Academic Press (1979) 173-217. | MR | Zbl

[11] D. Hayes: Analytic class number formulas in global function fields, Inventiones Math. 65 (1981) 49-69. | MR | Zbl

[12] D. Hayes: Elliptic units in function fields, in Proc. of a Conference on Modern Developments Related to Fermat's Last Theorem, D. Goldfeld ed., Birkhauser, Boston (1982). | MR | Zbl

[13] H. Stark: L-functions at s = 1. IV. First derivatives at s = 0. Advances in Math. 35 (1980) 197-235. | MR | Zbl

[14] J. Tate: Les conjectures de Stark sur les functions L d'Artin en s = 0, Birkhauser, Boston (1984). | MR | Zbl

[15] J. Tate: Brumer-Stark-Stickelberger, Séminaire de Théorie des Numbres, Université de Bordeaux (1980-81), exposé no. 24. | MR | Zbl

[16] J. Tate: On Stark's conjectures on the behavior of L(s, χ) at s = 0. Jour. Fac. Science, Univ. of Tokyo, 28 (1982), 963-978. | Zbl