Stickelberger elements in function fields
Compositio Mathematica, Tome 55 (1985) no. 2, p. 209-239
@article{CM_1985__55_2_209_0,
     author = {Hayes, David R.},
     title = {Stickelberger elements in function fields},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {55},
     number = {2},
     year = {1985},
     pages = {209-239},
     zbl = {0569.12008},
     mrnumber = {795715},
     language = {en},
     url = {http://www.numdam.org/item/CM_1985__55_2_209_0}
}
Hayes, David R. Stickelberger elements in function fields. Compositio Mathematica, Tome 55 (1985) no. 2, pp. 209-239. https://www.numdam.org/item/CM_1985__55_2_209_0/

[1] J. Coates: B-adic L-functions and Iwasawa's theory. A. Frölich (ed.), Algebraic Number Fields. London: Academic Press (1977) 269-353. | MR 460282 | Zbl 0393.12027

[2] V.G. Drinfeld: Elliptic Modules (Russian). Math. Sbornik 94 (1974) 594-627 = Math. USSR Sbornik 23 (1974) 561-592. | MR 384707 | Zbl 0321.14014

[3] S. Galovich and M. Rosen: The class number of cyclotomic function fields: J. Number Theory 13 (1981) 363-375. | MR 634206 | Zbl 0473.12014

[4] S. Galovich and M. Rosen: Units and class groups in cyclotomic functions fields. J. Number Theory 14 (1982) 156-184. | MR 655724 | Zbl 0483.12003

[5] S. Galovich and M. Rosen: Distributions on Rational Function Fields. Math. Annalen 256 (1981) 549-60. | MR 628234 | Zbl 0472.12013

[6] D. Goss: The Γ-ideal and special zeta values, Duke Journal (1980) 345-364. | Zbl 0441.12002

[7] D. Goss: On a new type of L-function for algebraic curves over finite fields. Pacific Journal 105 (1983) 143-181. | MR 688411 | Zbl 0571.14010

[8] B. Gross: The annihilation of divisor classes in abelian extensions of the rational function field. Séminaire de Théorie des Nombres(Bordeaux 1980-81), exposé no. 3. | Zbl 0507.14020

[9] D. Hayes: Explicit class field theory for rational function fields. Trans. Amer. Math. Soc. 189 (1974) 77-91. | MR 330106 | Zbl 0292.12018

[10] D. Hayes: Explicit class field theory in global function fields. G.C. Rota (ed.), Studies in Algebra and Number Theory. New York: Academic Press (1979) 173-217. | MR 535766 | Zbl 0476.12010

[11] D. Hayes: Analytic class number formulas in global function fields, Inventiones Math. 65 (1981) 49-69. | MR 636879 | Zbl 0491.12014

[12] D. Hayes: Elliptic units in function fields, in Proc. of a Conference on Modern Developments Related to Fermat's Last Theorem, D. Goldfeld ed., Birkhauser, Boston (1982). | MR 685307 | Zbl 0499.12012

[13] H. Stark: L-functions at s = 1. IV. First derivatives at s = 0. Advances in Math. 35 (1980) 197-235. | MR 563924 | Zbl 0475.12018

[14] J. Tate: Les conjectures de Stark sur les functions L d'Artin en s = 0, Birkhauser, Boston (1984). | MR 782485 | Zbl 0545.12009

[15] J. Tate: Brumer-Stark-Stickelberger, Séminaire de Théorie des Numbres, Université de Bordeaux (1980-81), exposé no. 24. | MR 644657 | Zbl 0504.12005

[16] J. Tate: On Stark's conjectures on the behavior of L(s, χ) at s = 0. Jour. Fac. Science, Univ. of Tokyo, 28 (1982), 963-978. | Zbl 0514.12013