On arithmetic quotients of the Siegel upper half space of degree two
Compositio Mathematica, Volume 58 (1986) no. 2, pp. 233-258.
@article{CM_1986__58_2_233_0,
     author = {Schwermer, Joachim},
     title = {On arithmetic quotients of the {Siegel} upper half space of degree two},
     journal = {Compositio Mathematica},
     pages = {233--258},
     publisher = {Martinus Nijhoff Publishers},
     volume = {58},
     number = {2},
     year = {1986},
     mrnumber = {844411},
     zbl = {0596.10029},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1986__58_2_233_0/}
}
TY  - JOUR
AU  - Schwermer, Joachim
TI  - On arithmetic quotients of the Siegel upper half space of degree two
JO  - Compositio Mathematica
PY  - 1986
SP  - 233
EP  - 258
VL  - 58
IS  - 2
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1986__58_2_233_0/
LA  - en
ID  - CM_1986__58_2_233_0
ER  - 
%0 Journal Article
%A Schwermer, Joachim
%T On arithmetic quotients of the Siegel upper half space of degree two
%J Compositio Mathematica
%D 1986
%P 233-258
%V 58
%N 2
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1986__58_2_233_0/
%G en
%F CM_1986__58_2_233_0
Schwermer, Joachim. On arithmetic quotients of the Siegel upper half space of degree two. Compositio Mathematica, Volume 58 (1986) no. 2, pp. 233-258. http://archive.numdam.org/item/CM_1986__58_2_233_0/

[1] A. Borel: Introduction aux groupes arithmétiques. Paris: Hermann (1969). | MR | Zbl

[2] A. Borel: Stable real cohomology of arithmetic groups II. In: J. Hano et al. (ed.), Manifolds and Lie groups. Progress in Maths., Vol. 14, pp. 21-55. Boston -Basel-Stuttgart (1981). | MR | Zbl

[3] A. Borel and J-P. SERRE: Corners and arithmetic groups. Comment. Math. Helvetici 48 (1973) 436-491. | EuDML | MR | Zbl

[4] A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups. Annals of Math. Studies 94, Princeton: University Press (1980). | MR | Zbl

[5] A. Dold: Lectures on algebraic topology. Grundlehren d. math. Wiss., 200. Berlin- Heidelberg-New York: Springer (1972). | MR | Zbl

[6] S. Gelbart: Holomorphic discrete series for the real symplectic group. Inventiones math. 19 (1973) 49-58. | EuDML | MR | Zbl

[7] G. Harder: On the cohomology of discrete arithmetically defined groups. In: Proc. of the Int. Colloq. on Discrete Subgroups of Liegroups and appl. to Moduli (Bombay 1973), pp. 129-160 Oxford: University Press (1975). | MR | Zbl

[8] G. Harder: Period integrals of Eisenstein cohomology classes and special values of some L-functions. In: Ed. N. Koblitz, Number theory related to Fermat's last theorem. Progress in Maths., Vol. 26, pp. 103-142, Boston- Basel-Stuttgart (1982). | MR | Zbl

[9] G. Harder: General aspects in the theory of modular symbols. In: Seminaire de theorie des nombres. Progress in Maths., Vol. 38, pp. 73-88, Boston (1983). | MR | Zbl

[10] G. Harder: Eisenstein cohomology of arithmetic groups: The case GL2. Preprint (1984). | Zbl

[11] Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math. 116 (1966) 1-111. | MR | Zbl

[12] Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. Notes in Maths., 62, Berlin- Heidelberg-New York: Springer (1968). | MR | Zbl

[13] B. Kostant: Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. of Math. 74 (1961) 329-387. | MR | Zbl

[14] R.P. Langlands: Modular forms and l-adic representations. In: Modular Functions of one variable II, Lect. Notes in Maths., 349, pp. 361-500, Berlin- Heidelberg-New York: Springer (1973). | MR | Zbl

[15] R.P. Langlands: On the functional equations satisfied by Eisenstein series. Lect. Notes in Maths., 544, Berlin-Heidelberg- New York: Springer (1976). | MR | Zbl

[16] R. Lee and J. Schwermer: Cohomology of arithmetic subgroups of SL3 at infinity. Journal f. d. reine u. angew. Math. 330 (1982) 100-131. | MR | Zbl

[17] R. Lee and J. Schwermer: The Lefschetz number of an involution on the space of harmonic cusp forms of SL3. Inventiones math. 73 (1983) 189-239. | MR | Zbl

[18] R. Lee and R. Szczarba: On the homology and cohomology of congruence subgroups. Inventiones math. 33 (1976) 15-53. | MR | Zbl

[19] J. Mennicke: Zur Theorie der Siegelschen Modulgruppe. Math. Annalen 159 (1965) 115-129. | MR | Zbl

[20] M.S. Narasimhan and K. Okamoto: An analogue of the Borel-Weil-Bott theorem for Hermitian symmetric pairs of noncompact type. Ann. of Math. 93 (1970) 486-511. | MR | Zbl

[21] J. Schwermer: Sur la cohomologie des sous-groupes de congruence de SL3(Z). C.R. Acad. Sc. Paris 283 (1976) 817-820. | MR | Zbl

[22] J. Schwermer: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lect. Notes in Maths., 988. Berlin-Heidelberg -New York-Tokyo: Springer (1983). | MR | Zbl

[23] J. Schwermer: Holomorphy of Eisenstein series at special points and cohomology of arithmetic subgroups of SLn(Q). Journal f.d. reine u. angew. Math. 364 (1986) 193-220. | MR | Zbl

[24] J. Schwermer: Euler products and the cohomology of arithmetic quotients of the Siegel upper half space of degree two. (In preparation.)

[25] J. Schwermer: Eisensteinreihen und die Kohomologie von Kongruenzuntergruppen von SLn(Z). Bonner Math. Schriften, no. 99 (1977). | MR | Zbl

[26] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Publ. Math. Soc. Japan 11, Princeton: University Press (1971). | MR | Zbl

[27] D.A. Vogan, Jr.: Representations of real reductive Lie groups. Progress in maths., Vol. 15, Boston-Basel-Stuttgart: Birkhäuser (1981). | MR | Zbl

[28] D.A. Vogan, JR. and G. Zuckerman: Unitary representations with non-zero cohomology. Compositio Math. 53 (1984) 51-90. | Numdam | MR | Zbl