The subspace theorem in diophantine approximations
Compositio Mathematica, Volume 69 (1989) no. 2, pp. 121-173.
@article{CM_1989__69_2_121_0,
     author = {Schmidt, Wolfgang M.},
     title = {The subspace theorem in diophantine approximations},
     journal = {Compositio Mathematica},
     pages = {121--173},
     publisher = {Kluwer Academic Publishers},
     volume = {69},
     number = {2},
     year = {1989},
     mrnumber = {984633},
     zbl = {0683.10027},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1989__69_2_121_0/}
}
TY  - JOUR
AU  - Schmidt, Wolfgang M.
TI  - The subspace theorem in diophantine approximations
JO  - Compositio Mathematica
PY  - 1989
SP  - 121
EP  - 173
VL  - 69
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1989__69_2_121_0/
LA  - en
ID  - CM_1989__69_2_121_0
ER  - 
%0 Journal Article
%A Schmidt, Wolfgang M.
%T The subspace theorem in diophantine approximations
%J Compositio Mathematica
%D 1989
%P 121-173
%V 69
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1989__69_2_121_0/
%G en
%F CM_1989__69_2_121_0
Schmidt, Wolfgang M. The subspace theorem in diophantine approximations. Compositio Mathematica, Volume 69 (1989) no. 2, pp. 121-173. http://archive.numdam.org/item/CM_1989__69_2_121_0/

1 E. Bombieri and J. Vaaler, On Siegel's lemma. Invent. Math. 73 (1983) 11-32. | MR | Zbl

2 E. Bombieri and A.J. Van Der Poorten, Some quantitative results related to Roth's Theorem. MacQuarie Math. Reports, Report No. 87-0005, February 1987.

3 J.W.S. Cassels, An Introduction to the Geometry of Numbers. Springer Grundlehren 99 (1959). | Zbl

4 H. Davenport, Note on a result of Siegel. Acta Arith. 2 (1937) 262-265. | JFM

5 H. Davenport and K.F. Roth, Rational approximation to algebraic numbers. Mathematika 2 (1955) 160-167. | MR | Zbl

6 H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the theorem of Roth). Invent. Math. 78 (1984) 445-490. | MR | Zbl

7 J.H. Evertse, Upper bounds for the number of solutions of Diophantine equations. Math. Centrum, Amsterdam (1983) 1-127. | MR | Zbl

8 K. Mahler, Ein Übertragungsprinzip für konvexe Körper. Časopis Pest. Mat. Fys. (1939) 93-102. | JFM | MR | Zbl

9 K. Mahler, On compound convex bodies I. Proc. Lon. Math. Soc. (3) 5, 358-379. | MR | Zbl

10 W.M. Schmidt, On heights of algebraic subspaces and diophantine approximations. Annals of Math. 83 (1967) 430-472. | MR | Zbl

11 W.M. Schmidt, Norm form equations. Annals of Math. 96 (1972) 526-551. | MR | Zbl

12 W.M. Schmidt, The number of solutions of norm form equations. Transactions A.M.S. (to appear). | MR | Zbl

13 W.M. Schmidt, Diophantine approximation. Springer Lecture Notes in Math. 785, Berlin, Heidelberg, New York (1980). | MR | Zbl