An analogy of Tian-Todorov theorem on deformations of CR-structures
Compositio Mathematica, Tome 85 (1993) no. 1, pp. 57-85.
@article{CM_1993__85_1_57_0,
     author = {Akahori, Takao and Miyajima, Kimio},
     title = {An analogy of {Tian-Todorov} theorem on deformations of $CR$-structures},
     journal = {Compositio Mathematica},
     pages = {57--85},
     publisher = {Kluwer Academic Publishers},
     volume = {85},
     number = {1},
     year = {1993},
     mrnumber = {1199204},
     zbl = {0779.53041},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1993__85_1_57_0/}
}
TY  - JOUR
AU  - Akahori, Takao
AU  - Miyajima, Kimio
TI  - An analogy of Tian-Todorov theorem on deformations of $CR$-structures
JO  - Compositio Mathematica
PY  - 1993
SP  - 57
EP  - 85
VL  - 85
IS  - 1
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1993__85_1_57_0/
LA  - en
ID  - CM_1993__85_1_57_0
ER  - 
%0 Journal Article
%A Akahori, Takao
%A Miyajima, Kimio
%T An analogy of Tian-Todorov theorem on deformations of $CR$-structures
%J Compositio Mathematica
%D 1993
%P 57-85
%V 85
%N 1
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1993__85_1_57_0/
%G en
%F CM_1993__85_1_57_0
Akahori, Takao; Miyajima, Kimio. An analogy of Tian-Todorov theorem on deformations of $CR$-structures. Compositio Mathematica, Tome 85 (1993) no. 1, pp. 57-85. http://archive.numdam.org/item/CM_1993__85_1_57_0/

[A1] Akahori, T.: Intrinsic formula for Kuranishi's ∂ϕb, RIMS, Kyoto Univ., 14 (1978), 615-641. | Zbl

[A2] Akahori, T.: The new estimate for the subbundles E j and its application to the deformation of the boundaries of strongly pseudo convex domains, Invent. Math. 63 (1981), 311-334. | MR | Zbl

[A3] Akahori, T.: The new Neumann operator associated with deformations of strongly pseudo convex domains and its application to deformation theory, Invent. Math. 68 (1982), 317-352. | MR | Zbl

[Ak-Mi] Akahori, T. and Miyajima, K.: Complex analytic construction of the Kuranishi family on a normal strongly pseudo convex manifold. II, RIMS, Kyoto Univ. 16 (1980), 811-834. | MR | Zbl

[Go-Mi] Goldman, W. and Millson, J.: The homotopy invariance of the Kuranishi space, III. J. Math., 34 (1990), 337-367. | MR | Zbl

[L] Lee, J.M.: Pseudo-Einstein structures on CR manifolds, Am. J. Math. 110 (1988), 157-178. | MR | Zbl

[Mi1] Miyajima, K.: Completion of Akahori's construction of the versal family of strongly pseudo convex CR-structures, Trans. Amer. Math. Soc. 277 (1980), 162-172. | MR | Zbl

[Mi2] Miyajima, K.: On realizations of families of strongly pseudo-convex CR structures, preprint. | MR | Zbl

[T] Tanaka, N.: A differential geometric study on strongly pseudo convex manifolds, Lectures in Mathematics, Dept. of Math., Kyoto Univ. | Zbl

[Ti] Tian, C.: Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in (S. T. Yau ed.) Mathematical Aspects of String Theory, World Scientific (1987) pp. 629-646. | MR | Zbl

[To] Todorov, A.N.: The Weil-Petersson geometry of the moduli space of SU(n ≽ 3) (Calabi-Yau) Manifolds I, Commun. Math. Phy. 126 (1989). | Zbl