Lower bounds for resultants, I
Compositio Mathematica, Volume 88 (1993) no. 1, p. 1-23
@article{CM_1993__88_1_1_0,
     author = {Evertse, Jan-Hendrik and Gy\"ory, K\'alm\'an},
     title = {Lower bounds for resultants, I},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {88},
     number = {1},
     year = {1993},
     pages = {1-23},
     zbl = {0780.11016},
     mrnumber = {1234974},
     language = {en},
     url = {http://www.numdam.org/item/CM_1993__88_1_1_0}
}
Evertse, J. H.; Györy, K. Lower bounds for resultants, I. Compositio Mathematica, Volume 88 (1993) no. 1, pp. 1-23. http://www.numdam.org/item/CM_1993__88_1_1_0/

[1] B.J. Birch and J.R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972) 385-394. | MR 306119 | Zbl 0248.12002

[2] J.H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584. | MR 735341 | Zbl 0521.10015

[3] J.H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984) 225-244. | Numdam | MR 766298 | Zbl 0547.10008

[4] J.H. Evertse and K. Györy, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989) 60-80. | MR 1004133 | Zbl 0675.10009

[5] J.H. Evertse and K. Györy, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991) 169-204. | Numdam | MR 1117339 | Zbl 0746.11020

[6] J H. Evertse, K. Györy, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477. | MR 939471 | Zbl 0662.10012

[7] K. Györy, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973) 419-426. | MR 437489 | Zbl 0269.12001

[8] K. Györy, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190. | MR 498497 | Zbl 0402.10053

[9] K. Györy, On arithmetic graphs associated with integral domains, in: A Tribute to Paul Erdös (eds. A. Baker, B. Bollobás, A. Hajnal), pp. 207-222. Cambridge University Press, 1990. | MR 1117015 | Zbl 0727.11039

[10] K. Györy, On the number of pairs of polynomials with given resultant or given semi-resultant, to appear. | MR 1243304 | Zbl 0798.11043

[11] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984) 299-327. | MR 767195 | Zbl 0554.10009

[12] H.P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math. 29 (1977) 267-270. | MR 491529 | Zbl 0365.10026

[13] W.M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications (ed. C. F. Osgood), pp. 235-253, Academic Press, New York, 1973. | MR 354566 | Zbl 0267.10023

[14] W.M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer-Verlag, 1980. | MR 568710 | Zbl 0421.10019

[15] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Symp. Pure Math. 20 (1969 Number Theory Institute; ed. D. J. Lewis), pp. 213-247, Amer. Math. Soc., Providence, 1971. | MR 319929 | Zbl 0223.10017