@article{CM_1993__88_3_251_0, author = {Pink, Richard}, title = {Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime}, journal = {Compositio Mathematica}, pages = {251--264}, publisher = {Kluwer Academic Publishers}, volume = {88}, number = {3}, year = {1993}, mrnumber = {1241950}, zbl = {0820.20055}, language = {en}, url = {http://archive.numdam.org/item/CM_1993__88_3_251_0/} }
TY - JOUR AU - Pink, Richard TI - Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime JO - Compositio Mathematica PY - 1993 SP - 251 EP - 264 VL - 88 IS - 3 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1993__88_3_251_0/ LA - en ID - CM_1993__88_3_251_0 ER -
%0 Journal Article %A Pink, Richard %T Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime %J Compositio Mathematica %D 1993 %P 251-264 %V 88 %N 3 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1993__88_3_251_0/ %G en %F CM_1993__88_3_251_0
Pink, Richard. Classification of pro-$p$ subgroups of $\mathrm {SL}_2$ over a $p$-adic ring, where $p$ is an odd prime. Compositio Mathematica, Tome 88 (1993) no. 3, pp. 251-264. http://archive.numdam.org/item/CM_1993__88_3_251_0/
1 Subgroups of the full linear group over a semilocal ring that contain the group of diagonal matrices, Tr. Mat. Inst. Akad. Nauk SSSR, 148 (1978), 43-57. | MR | Zbl
,2 Modular konstruierte unverzweigte abelsche p-Erweiterungen von Q(ζ p) und die Struktur ihrer Galoisgruppe, Math. Nachr. 159 (1992) 83-99. | Zbl
, ,3 Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965). | Numdam | MR | Zbl
,4 Représentations l-adiques, Compos. Math. 71 (1989), 303-362. | Numdam | MR | Zbl
,5 Description of subgroups of the full linear group over a semilocal ring that contain the group of diagonal matrices, Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. Nauk SSSR, 86 (1979), 30-34- Journal of Soviet Mathematics 17, No. 4 (1981), 1960-1963. | MR | Zbl
,