Asymptotics and characteristic cycles for representations of complex groups
Compositio Mathematica, Volume 88 (1993) no. 3, pp. 265-283.
@article{CM_1993__88_3_265_0,
     author = {Chang, Jen-Tseh},
     title = {Asymptotics and characteristic cycles for representations of complex groups},
     journal = {Compositio Mathematica},
     pages = {265--283},
     publisher = {Kluwer Academic Publishers},
     volume = {88},
     number = {3},
     year = {1993},
     mrnumber = {1241951},
     zbl = {0794.22011},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1993__88_3_265_0/}
}
TY  - JOUR
AU  - Chang, Jen-Tseh
TI  - Asymptotics and characteristic cycles for representations of complex groups
JO  - Compositio Mathematica
PY  - 1993
SP  - 265
EP  - 283
VL  - 88
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1993__88_3_265_0/
LA  - en
ID  - CM_1993__88_3_265_0
ER  - 
%0 Journal Article
%A Chang, Jen-Tseh
%T Asymptotics and characteristic cycles for representations of complex groups
%J Compositio Mathematica
%D 1993
%P 265-283
%V 88
%N 3
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1993__88_3_265_0/
%G en
%F CM_1993__88_3_265_0
Chang, Jen-Tseh. Asymptotics and characteristic cycles for representations of complex groups. Compositio Mathematica, Volume 88 (1993) no. 3, pp. 265-283. http://archive.numdam.org/item/CM_1993__88_3_265_0/

[B-V] D. Barbasch and D. Vogan, The local structure of characters, J. Funct. Anal. 37 (1980) 27-55. | MR | Zbl

[B-B1] A. Beilinson and J. Bernstein, Localisation de g-modules, C.R. Acad. Sci. Paris, Ser. I 292 15-18. | MR | Zbl

[B-B2] A. Beilinson and J. Bernstein, A Generalization of Casselman's Submodule Theorem, Representation Theory of Reductive Groups, Progress in Mathematics 40, Birkhäuser, Boston, 1983. | Zbl

[B] J. Bernstein, Algebraic Theory of D-Modules, mimeographed note (1983).

[Bo-Br] W. Borho and J.-L. Brylinski, Differential operators on homogeneous spaces III, Invent. Math. 80 (1985) 1-68. | MR | Zbl

[C-E] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956. | MR | Zbl

[Ca] L. Casian, Primitive ideals and representations, J. Algebra 101 (1986) 497-515. | MR | Zbl

[C-1] J.-T. Chang, Special K-types, tempered characters and the Beilinson-Bernstein realization, Duke Math. J. 56 (1988) 345-383. | MR | Zbl

[C-2] J.-T. Chang, Characteristic cycles of holomorphic discrete series, preprint, to appear in Trans. A.M.S. | MR | Zbl

[H] R. Hartshone, Algebraic Geometry, Springer-Verlag, New York, 1979.

[H-M-S-W] H. Hecht, D. Miličič, W. Schmid and J. Wolf, Localization and standard modules for real semisimple Lie groups I: the duality theorem, Invent. Math. 90 (1987) 297-332. | MR | Zbl

[H-S] H. Hecht and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983) 49-151. | MR | Zbl

[J1] A. Joseph, Goldie rank in the enveloping algebra of a semisimple Lie algebra II, J. Algebra 65 (1980) 284-306. | MR | Zbl

[J2] A. Joseph, On the characteristic polynomials of orbital varieties, Ann. E.N.S. 22 (1989) 569-603. | Numdam | MR | Zbl

[K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971) 753-809. | MR | Zbl

[K-T] M. Kashiwara and T. Tanisaki, The characteristic cycles of holonomic systems on a flag manifold, Invent. Math. 77 (1984) 185-198. | MR | Zbl

[M] D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik, Band 34, Springer-Verlag, Berlin-Heidelberg: New York, 1965. | MR | Zbl

[R] W. Rossmann, Invariant eigendistributions on a complex Lie algebra and homology classes on the conormal variety I, II, J. Funct. Anal. 96 (1991) 130-193. | MR | Zbl

[S] J. Sekiguchi, Remarks on nilpotent orbits of a symmetric pair, J. Math. Soc. Japan 39 (1987) 127-138. | MR | Zbl

[V1] D. Vogan, Jr., Representations of Real Reductive Lie Groups, Birkhäuser, Boston, 1981. | MR | Zbl

[V2] D. Vogan, Jr., Five Lectures, at Bowdoin College, August 1989.

[V3] D. Vogan, Jr., Associated varieties and unipotent representations, preprint (1990). | MR

[V4] D. Vogan, Jr., Gelfand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978) 75-98. | MR | Zbl