The adjoint of a positive semigroup
Compositio Mathematica, Tome 90 (1994) no. 1, p. 99-118
@article{CM_1994__90_1_99_0,
     author = {Van Neerven, J. M. A. M. and de Pagter, B.},
     title = {The adjoint of a positive semigroup},
     journal = {Compositio Mathematica},
     publisher = {Kluwer Academic Publishers},
     volume = {90},
     number = {1},
     year = {1994},
     pages = {99-118},
     zbl = {0812.47042},
     mrnumber = {1266497},
     language = {en},
     url = {http://www.numdam.org/item/CM_1994__90_1_99_0}
}
Van Neerven, J. M. A. M.; de Pagter, B. The adjoint of a positive semigroup. Compositio Mathematica, Tome 90 (1994) no. 1, pp. 99-118. http://www.numdam.org/item/CM_1994__90_1_99_0/

[AB] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Math. 119, Academic Press, 1985. | MR 809372 | Zbl 0608.47039

[BB] P.L. Butzer, and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag, New York (1967). | MR 230022 | Zbl 0164.43702

[C1] Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme, Perturbation theory for dual semigroups, Part I: The sun-reflexive case, Math. Ann. 277 (1987) 709-725; Part II: Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinb. 109A (1988) 145-172; Part III: Nonlinear Lipschitz perturbations in the sun-reflexive case, In: G. Da Prato, M. Iannelli (eds.), Volterra Integro Differential Equations in Banach Spaces and Applications, Longman, (1989) 67-89; Part IV: The intertwining formula and the canonical pairing, In: Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 116, Marcel Dekker Inc., New York- Basel (1989); Part V: Variation of constants formulas, In: Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York -Basel (1991). | MR 901713 | Zbl 0675.47036

[GN] A. Grabosch and R. Nagel, Order structure of the semigroup dual: a counterexample, Indag. Math. 92 (1989) 199-201. | MR 1005051 | Zbl 0697.47037

[GM] C.C. Graham and O.C. Mcgehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin (1979). | MR 550606 | Zbl 0439.43001

[M] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York (1991). | MR 1128093 | Zbl 0743.46015

[MG] H. Milicer-Gruzewska, Sur la continuité de la variation, C. R. Soc. Sci. de Varsovie, 21 (1928) 164-177. | JFM 57.1390.02

[Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lect. Notes in Math. 1184 (1986). | MR 839450 | Zbl 0585.47030

[Ne] J.M.A.M. Van Neerven, The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springer-Verlag, Berlin, Heidelberg, New York (1992). | MR 1222650 | Zbl 0780.47026

[NP] J.M.A.M. Van Neerven and B. De Pagter, Certain semigroups on Banach function spaces and their adjoints, In: Semigroup Theory and Evolution Equations. Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York- Basel (1991). | MR 1164664 | Zbl 0745.47027

[Pa1] B. De Pagter, A characterization of sun-reflexivity, Math. Ann. 283 (1989) 511-518. | MR 985246 | Zbl 0696.47039

[Pa2] B. De Pagter, A Wiener-Young-type theorem for dual semigroups, Appl. Math. 27 (1992) 101-109. | MR 1184882 | Zbl 0895.47030

[Ph] R.S. Phillips, The adjoint semi-group, Pac. J. Math. 5 (1955) 269-283. | MR 70976 | Zbl 0064.11202

[P1] A. Plessner, Eine Kennzeichnung der totalstetigen Funktionen, J. f. Reine u. Angew. Math. 60 (1929) 26-32. | JFM 55.0143.03

[S] H.H. Schaefer, Banach Lattices and Positive Operators, Springer Verlag, Berlin, Heidelberg, New York (1974). | MR 423039 | Zbl 0296.47023

[WY] N. Wiener and R.C. Young, The total variation of g(x + h) - g(x), Trans. Am. Math. Soc. 35 (1933) 327-340. | JFM 59.0284.03 | MR 1501686 | Zbl 0006.19401

[Z] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983). | MR 704021 | Zbl 0519.46001