@article{CM_1996__101_1_55_0, author = {Vaisman, Izu}, title = {Complementary 2-forms of {Poisson} structures}, journal = {Compositio Mathematica}, pages = {55--75}, publisher = {Kluwer Academic Publishers}, volume = {101}, number = {1}, year = {1996}, mrnumber = {1390832}, zbl = {0853.58056}, language = {en}, url = {http://archive.numdam.org/item/CM_1996__101_1_55_0/} }
Vaisman, Izu. Complementary 2-forms of Poisson structures. Compositio Mathematica, Tome 101 (1996) no. 1, pp. 55-75. http://archive.numdam.org/item/CM_1996__101_1_55_0/
1 Variétés différentiables et analytiques. Paris, Hermann, 1971. | MR
:2 L.: A differential complex for Poisson manifolds. J. Diff. Geometry. 28 (1988) 93-114. | MR | Zbl
-3 The Schouten bracket and Hamiltonian operators. Funkt. Anal. Prilozhen. 14 (3) (1980) 71-74. | MR | Zbl
and :4 Hamiltonian operators and the classical Yang-Baxter equation. Funkt. Anal. Prilozhen. 16 (4) (1982) 1-9. | MR | Zbl
and :5 Differential Geometry, Lie groups and symmetric spaces. Academic Press, New York, 1978. | MR | Zbl
:6 The modified Yang-Baxter equation and bihamiltonian structures. Proc. XVIIth Int. Conf. on Diff. Geom. Methods in Theoretical Physics, Chester 1988 (A. Solomon, ed.), World Scientific, Singapore, 1989, 12-25. | MR
:7 Poisson-Nijenhuis structures. Ann. Inst. H. Poincaré, série A (Physique théorique). 53 (1990) 35-81. | Numdam | MR | Zbl
and :8 Crochet de Schouten-Nijenhuis et cohomologie. In: É. Cartan et les mathématiques d'aujourd'hui. Soc. Math. de France, Astérisque, hors série, 1985, 257-271. | Numdam | MR | Zbl
:9 Sur le problème d'équivalence de certaines structures infinitésimales régulières. Ann. Mat. Pura Appl. 36 (1954) 27-120. | MR | Zbl
:10 Les variétés de Poisson et leurs algèbres de Lie associées. J. Diff. Geometry, 12 (1977) 253-300. | MR | Zbl
:11 Lie groupoids and Lie algebroids in differential geometry. London Math. Soc. Lecture Notes Series 124, Cambridge Univ. Press, Cambridge, 1987. | MR | Zbl
:12 A geometrical characterization of integrable Hamiltonian Systems through the theory of Poisson- Nijenhuis manifolds. Quaderno S. Univ. of Milan, 19 (1984).
and :13 Some simple examples of symplectic manifolds. Proc. American Math. Soc. 55 (1976) 467-468. | MR | Zbl
:14 Cohomology and differential forms. M. Dekker, Inc., New York, 1973. | MR | Zbl
:15 Lectures on the geometry of Poisson manifolds. Progress in Math. Series, 118, Birkhäuser, Basel, 1994. | MR | Zbl
:16 The Poisson-Nijenhuis manifolds revisited. Rendiconti Sem. Mat. Torino, 52 (1994). | MR | Zbl
:17 Introduction à l'étude des variétés Kähleriennes. Hermann, Paris, 1971. | Zbl
:18 The local structure of Poisson manifolds. J. Diff. Geometry. 18 (1983) 523-557. | MR | Zbl
: