Time minimal control of batch reactors
ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 407-467.
@article{COCV_1998__3__407_0,
     author = {Bonnard, B. and Launay, G.},
     title = {Time minimal control of batch reactors},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {407--467},
     publisher = {EDP-Sciences},
     volume = {3},
     year = {1998},
     mrnumber = {1658682},
     zbl = {0914.93043},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1998__3__407_0/}
}
TY  - JOUR
AU  - Bonnard, B.
AU  - Launay, G.
TI  - Time minimal control of batch reactors
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1998
SP  - 407
EP  - 467
VL  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1998__3__407_0/
LA  - en
ID  - COCV_1998__3__407_0
ER  - 
%0 Journal Article
%A Bonnard, B.
%A Launay, G.
%T Time minimal control of batch reactors
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1998
%P 407-467
%V 3
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_1998__3__407_0/
%G en
%F COCV_1998__3__407_0
Bonnard, B.; Launay, G. Time minimal control of batch reactors. ESAIM: Control, Optimisation and Calculus of Variations, Volume 3 (1998), pp. 407-467. http://archive.numdam.org/item/COCV_1998__3__407_0/

[1] A. Agrachev: Symplectic methods in optimization and control. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | Zbl

[2] B. Bonnard: Rapport préliminaire sur la conduite optimale des réacteurs chimiques de type batch, Prépublication de l'Université de Bourgogne, Laboratoire de Topologie, n° 58, 1995.

[3] B. Bonnard, J. De Morant: Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. Contr. Opt., 33, 1995, 1279-1311. | MR | Zbl

[4] B. Bonnard, I. Kupka: Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum mathematicum, 5, 1993, 111-159. | MR | Zbl

[5] B. Bonnard, G. Launay, M. Pelletier: Classification générique de synthèses temps minimales avec cible de codimension un et applications. Ann. IHP (an), 14, 1997, 55-102. | Numdam | MR | Zbl

[6] I. Ekeland: Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, 47, 1977, 1-32. | Numdam | MR | Zbl

[7] M. Feinberg: Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, 42, 1987, 2229-2268.

[8] H. Grauert, K. Fritzche: Several complex variables, Springer Verlag, New York, 1976. | MR | Zbl

[9] W. Harmon Ray: Advanced Process Control, Butterworths Reprint Series in chemical engineering, 1989.

[10] H. Hermes: Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Opt., 16, 1978, 715-727. | MR | Zbl

[11] B. Jakubczyk: Critical Hamiltonians and feedback invariants. Geometry of feedback and optimal control, Marcel Dekker, New York, 1997. | MR | Zbl

[12] I. Kupka: Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, Trans. Amer. Math. Soc., 299, 1987, 225-243. | MR | Zbl

[13] I. Kupka: Optimalité des extrémales ordinaires, Communication personnelle.

[14] G. Launay, M. Pelletier: The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dyn. Contr. Syst., 3, 1997, 165-204. | MR | Zbl

[15] L. Pontriaguine et al.: Théorie mathématique des processus optimaux, Mir, Moscou, 1974. | MR | Zbl

[16] H.J. Sussmann: The structure of time-optimal trajectories for single-input systems in the plane: the C∞ non singular case, SIAM J. Control Opt., 25, 1987, 433-465. | MR | Zbl

[17] H.J. Sussmann: Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. Control Opt., 25, 1987, 1145-1162. | MR | Zbl