Well posedness and control of semilinear wave equations with iterated logarithms
ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 37-56.
@article{COCV_1999__4__37_0,
     author = {Cannarsa, Piermarco and Komornik, Vilmos and Loreti, Paola},
     title = {Well posedness and control of semilinear wave equations with iterated logarithms},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {37--56},
     publisher = {EDP-Sciences},
     volume = {4},
     year = {1999},
     mrnumber = {1680689},
     zbl = {0939.35124},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_1999__4__37_0/}
}
TY  - JOUR
AU  - Cannarsa, Piermarco
AU  - Komornik, Vilmos
AU  - Loreti, Paola
TI  - Well posedness and control of semilinear wave equations with iterated logarithms
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 1999
SP  - 37
EP  - 56
VL  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_1999__4__37_0/
LA  - en
ID  - COCV_1999__4__37_0
ER  - 
%0 Journal Article
%A Cannarsa, Piermarco
%A Komornik, Vilmos
%A Loreti, Paola
%T Well posedness and control of semilinear wave equations with iterated logarithms
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 1999
%P 37-56
%V 4
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_1999__4__37_0/
%G en
%F COCV_1999__4__37_0
Cannarsa, Piermarco; Komornik, Vilmos; Loreti, Paola. Well posedness and control of semilinear wave equations with iterated logarithms. ESAIM: Control, Optimisation and Calculus of Variations, Tome 4 (1999), pp. 37-56. http://archive.numdam.org/item/COCV_1999__4__37_0/

[1] T. Cazenave and A. Haraux, Équations d'évolution avec non linéarité logarithmique. Ann. Fac. Sci. Toulouse 2 ( 1980) 21-51. | Numdam | MR | Zbl

[2] T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires. Mathématiques et applications, Vol. 1, Ellipses et SMAI, Paris ( 1990). | MR | Zbl

[3] P. Erdős, On the law of the iterated logarithm. Ann. of Math. 43 ( 1942) 419-436. | MR | Zbl

[4] O.Yu. Imanuvilov, Boundary control of semilinear evolution equations. Russian Math. Surveys 44 ( 1989183-184. | MR | Zbl

[5] Li Ta-Tsien and Bing-Yu Zhang, Global exact controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225 ( 1998289-311. | MR | Zbl

[6] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris ( 1969). | MR | Zbl

[7] V.G. Maz'Ja, Sobolev Spaces. Springer-Verlag, New York ( 1985). | MR

[8] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York ( 1983). | MR | Zbl

[9] S.L. Sobolev, Partial Differential Equations of Mathematical Physics. Dover, New York ( 1989). | Zbl

[10] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10 ( 1993) 109-129. | Numdam | MR | Zbl