@article{COCV_2000__5__207_0, author = {Belishev, Mikhail and Glasman, Aleksandr}, title = {Boundary control of the {Maxwell} dynamical system : lack of controllability by topological reasons}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {207--217}, publisher = {EDP-Sciences}, volume = {5}, year = {2000}, mrnumber = {1750615}, zbl = {1121.93307}, language = {en}, url = {http://archive.numdam.org/item/COCV_2000__5__207_0/} }
TY - JOUR AU - Belishev, Mikhail AU - Glasman, Aleksandr TI - Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2000 SP - 207 EP - 217 VL - 5 PB - EDP-Sciences UR - http://archive.numdam.org/item/COCV_2000__5__207_0/ LA - en ID - COCV_2000__5__207_0 ER -
%0 Journal Article %A Belishev, Mikhail %A Glasman, Aleksandr %T Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons %J ESAIM: Control, Optimisation and Calculus of Variations %D 2000 %P 207-217 %V 5 %I EDP-Sciences %U http://archive.numdam.org/item/COCV_2000__5__207_0/ %G en %F COCV_2000__5__207_0
Belishev, Mikhail; Glasman, Aleksandr. Boundary control of the Maxwell dynamical system : lack of controllability by topological reasons. ESAIM: Control, Optimisation and Calculus of Variations, Tome 5 (2000), pp. 207-217. http://archive.numdam.org/item/COCV_2000__5__207_0/
[1] The controllability in the filled domain for the multidimensional wave equation with a singular boundary control J. Math. Sci. 83 ( 1997). | MR | Zbl
, and ,[2] Boundary control in reconstruction of manifolds and metrics(the BC-method). Inverse Problems 13 ( 1997) R1-R45. http://www.iop.org/Journals/ip/. | MR | Zbl
,[3] Boundary control and inverse problem for the dynamical maxwell system: the recovering of velocity in regular zone. Preprint CMLA ENS Cachan ( 1998) 9814. http://www.cmla.ens-cachan.fr
and ,[4] Vizualization of waves in the Maxwell dynamical system(The BC-method). Preprint POMI ( 1997) 22. http://www.pdmi.ras.ru/preprint/1997/ | MR
and ,[5] On reconstruction of gravity field via external electromagnetic measurements. Preprint PDMI ( 1999) 10.http://www.pdmi.ras.ru/preprint/1999/10-99.ps.gz.
, , and ,[6] On an orthogonal decomposition of the space of square-summable vector- functions and operators of the vector analisys. Proc. Steklov Inst. Math. 59 ( 1960) 5-36, in Russian. | MR | Zbl
and ,[7] Les inéquations en mécanique et en physique, Vol. 21 of Travaux et recherches mathématiques. Paris: Dunod. XX ( 1972). | MR | Zbl
and ,[8] Uniqueness and stability in the Cauchy Problem for Maxwell and elasticity systems. Nonlinear Partial Differential Equations and their applications. College de France Seminar. XIV ( 1999) to appear. | MR | Zbl
, , and ,[9] Exact boundary controllability of Maxwell's equations in a general region. SIAM J. Control Optim. 27 ( 1989) 374-388. | MR | Zbl
,[10] Recent advances in regularity of second-order hyperbolic mixed problems, and applications, K.R.T. Christopher et al., Eds. Jones, editor. Springer-Verlag, Berlin, Dynam. Report. Expositions Dynam. Systems (N.S.) 3 ( 1994) 104-162. | MR | Zbl
and ,[11] Initial boundary value problems in mathematical physics. Teubner, Stuttgart ( 1972). | MR | Zbl
,[12] The Sobolev spaces. Leningrad, Leningrad State University ( 1985), in Russian. | MR | Zbl
,[13] Controlabilité exacte sur une partie du bord des équations de Maxwell. C. R. Acad. Sci. Paris Sér. I Math. 309 ( 1989) 811-815. | MR | Zbl
,[14] Boundary value control theory of the higher-dimensional wave equation. SIAM J. Control Optim. 9 ( 1971) 29-42. | MR | Zbl
,[15] Hodge decomposition. A method for solving boundary value problems. Springer Verlag, Berlin, Lecture Notes in Math. 1607 ( 1995). | MR | Zbl
,[16] Unique continuation for solutions to PDE's; between Hoermander's theorem and Holmgren's theorem. Comm. Partial Differential Equations 20 ( 1995) 855-884. | MR | Zbl
,[17] Exact boundary controllability of a Maxwell problem. SIAM J. Control Optim. (to appear). | Zbl
,