The wave equation with oscillating density : observability at low frequency
ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 219-258.
@article{COCV_2000__5__219_0,
     author = {Lebeau, Gilles},
     title = {The wave equation with oscillating density : observability at low frequency},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {219--258},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2000},
     mrnumber = {1750616},
     zbl = {0953.35083},
     language = {en},
     url = {http://archive.numdam.org/item/COCV_2000__5__219_0/}
}
TY  - JOUR
AU  - Lebeau, Gilles
TI  - The wave equation with oscillating density : observability at low frequency
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2000
SP  - 219
EP  - 258
VL  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/COCV_2000__5__219_0/
LA  - en
ID  - COCV_2000__5__219_0
ER  - 
%0 Journal Article
%A Lebeau, Gilles
%T The wave equation with oscillating density : observability at low frequency
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2000
%P 219-258
%V 5
%I EDP-Sciences
%U http://archive.numdam.org/item/COCV_2000__5__219_0/
%G en
%F COCV_2000__5__219_0
Lebeau, Gilles. The wave equation with oscillating density : observability at low frequency. ESAIM: Control, Optimisation and Calculus of Variations, Volume 5 (2000), pp. 219-258. http://archive.numdam.org/item/COCV_2000__5__219_0/

[1] M. Avellaneda, C. Bardos and J. Rauch, Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptot. Anal. 5 ( 1992) 481-484. | MR | Zbl

[2] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 ( 1998) 153-208. | MR | Zbl

[3] N. Burq and G. Lebeau, Mesures de défaut de compacité; applications au système de Lamé, preprint. | Numdam | MR | Zbl

[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 ( 1992) 1024-1075. | MR | Zbl

[5] C. Castro, Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint. | MR | Zbl

[6] C. Castro and E. Zuazua, Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris 324 ( 1997) 1237-1242. | MR | Zbl

[7] P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire X EDP, exposé 16 ( 1991). | Numdam | MR | Zbl

[8] P. Gérard and E. Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71 ( 1993) 559-607. | MR | Zbl

[9] G. Lebeau, Contrôle de l'équation de SchrödingerJ. Math. Pures Appl. 71 ( 1993) 267-291. | MR | Zbl

[10] G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, A. Boutet de Monvel and V. Marchenko, Eds. Kluwer Academic Publishers ( 1996) 73-109. | MR | Zbl

[11] R. Melrose and J. Sjöstrand, Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31 ( 1978) 593-617; 35 ( 1982) 129-168. | MR | Zbl