The notion of quasiconvex exposed points is introduced for compact sets of matrices, motivated from the variational approach to material microstructures. We apply the notion to give geometric descriptions of the quasiconvex extreme points for a compact set. A weak version of Straszewicz type density theorem in convex analysis is established for quasiconvex extreme points. Some examples are examined by using known explicit quasiconvex functions.
Mots-clés : quasiconvex functions, quasiconvex hull, homogeneous Young measure, quasiconvex exposed points, Straszewicz theorem
@article{COCV_2001__6__1_0, author = {Zhang, Kewei}, title = {On the quasiconvex exposed points}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--19}, publisher = {EDP-Sciences}, volume = {6}, year = {2001}, mrnumber = {1804495}, zbl = {0970.49013}, language = {en}, url = {http://archive.numdam.org/item/COCV_2001__6__1_0/} }
Zhang, Kewei. On the quasiconvex exposed points. ESAIM: Control, Optimisation and Calculus of Variations, Tome 6 (2001), pp. 1-19. http://archive.numdam.org/item/COCV_2001__6__1_0/
[1] Compact Convex Sets and Boundary Integrals. Springer-Verlag (1971). | MR | Zbl
,[2] Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. | Zbl
and ,[3] Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101 (1973) 129-184. | EuDML | Numdam | Zbl
and ,[4] Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337-403. | Zbl
,[5] A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, edited by M. Rascle, D. Serre and M. Slemrod. Springer-Verlag (1989) 207-215. | Zbl
,[6] Sets of gradients with no rank-one connections. J. Math. Pures Appl. 69 (1990) 241-259. | Zbl
,[7] Restrictions on Microstructures. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 843-878. | Zbl
, , and ,[8] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl
and ,[9] Proposed experimental tests of a theory of fine microstructures and the two-well problem. Philos. Trans. Roy. Soc. London Ser. A 338 (1992) 389-450. | Zbl
and ,[10] Lower semicontinuity and multiple integrals and the biting lemma. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990) 367-379. | Zbl
and ,[11] Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988) 237-277. | Zbl
and ,[12] Direct Methods in the Calculus of Variations. Springer-Verlag (1989). | MR | Zbl
,[13] Théorème d'existence dans le cas scalaire et vectoriel pour les équations de Hamilton-Jacobi. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 237-240. | Zbl
and ,[14] Sur le problème de Cauchy-Dirichlet pour les systèmes d'équations non linéaires du premier ordre. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 599-602. | Zbl
and ,[15] General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial case. Acta Math. 178 (1997) 1-37. | Zbl
and ,[16] Cauchy-Dirichlet problem for first order nonlinear systems. J. Funct. Anal. 152 (1998) 404-446. | Zbl
and ,[17] Implicit second order partial differential equations. Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 299-328. | Numdam | Zbl
and ,[18] General Topology. van Nostrand (1955). | MR | Zbl
,[19] Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal 115 (1991) 329-365. | Zbl
and ,[20] The relaxation of a double well energy. Cont. Mech. Therm. 3 (1991) 981-1000. | Zbl
,[21] Convex Sets and Their Applications. John Wiley & Sons (1982). | MR | Zbl
,[22] Multiple integrals in the calculus of variations. Springer (1966). | Zbl
,[23] Attainment results for the two-well problem by convex integration. Preprint (1993). | MR | Zbl
and ,[24] Liouville's theorem on conformal mappings under minimal regularity assumptions. Siberian Math. J. 8 (1967) 631-653. | Zbl
,[25] Convex Analysis. Princeton University Press (1970). | MR | Zbl
,[26] Functional Analysis. McGraw-Hill (1973). | MR | Zbl
,[27] On regularity for the Monge-Ampère equations. Preprint.
,[28] New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293-330. | Zbl
,[29] On the problem of two wells, in Microstructure and phase transitions, edited by D. Kinderlehrer, R.D. James, M. Luskin and J. Ericksen. Springer, IMA J. Appl. Math. 54 (1993) 183-189. | Zbl
,[30] On Tartar's conjecture. Ann. Inst. H. Poincaré 10 (1993) 405-412. | Numdam | Zbl
,[31] Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, IV, edited by R.J. Knops. Pitman (1979). | MR | Zbl
,[32] A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) XIX (1992) 313-326. | Numdam | Zbl
,[33] On connected subsets of without rank-one connections. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 207-216. | Zbl
,[34] On various semiconvex hulls in the calculus of variations. Calc. Var. Partial Differential Equations 6 (1998) 143-160. | Zbl
,[35] On the structure of quasiconvex hulls. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 663-686. | Numdam | Zbl
,