In this paper, we establish Carleman estimates for the two dimensional isotropic non-stationary Lamé system with the zero Dirichlet boundary conditions. Using this estimate, we prove the uniqueness and the stability in determining spatially varying density and two Lamé coefficients by a single measurement of solution over , where is a sufficiently large time interval and a subdomain satisfies a non-trapping condition.
Mots-clés : Carleman estimate, Lamé system, inverse problem
@article{COCV_2005__11_1_1_0, author = {Imanuvilov, Oleg Yu. and Yamamoto, Masahiro}, title = {Carleman estimates for the non-stationary {Lam\'e} system and the application to an inverse problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--56}, publisher = {EDP-Sciences}, volume = {11}, number = {1}, year = {2005}, doi = {10.1051/cocv:2004030}, mrnumber = {2110612}, zbl = {1089.35086}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2004030/} }
TY - JOUR AU - Imanuvilov, Oleg Yu. AU - Yamamoto, Masahiro TI - Carleman estimates for the non-stationary Lamé system and the application to an inverse problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 1 EP - 56 VL - 11 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2004030/ DO - 10.1051/cocv:2004030 LA - en ID - COCV_2005__11_1_1_0 ER -
%0 Journal Article %A Imanuvilov, Oleg Yu. %A Yamamoto, Masahiro %T Carleman estimates for the non-stationary Lamé system and the application to an inverse problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 1-56 %V 11 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2004030/ %R 10.1051/cocv:2004030 %G en %F COCV_2005__11_1_1_0
Imanuvilov, Oleg Yu.; Yamamoto, Masahiro. Carleman estimates for the non-stationary Lamé system and the application to an inverse problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 11 (2005) no. 1, pp. 1-56. doi : 10.1051/cocv:2004030. http://archive.numdam.org/articles/10.1051/cocv:2004030/
[1] Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl
, and ,[2] Distribution of resonances and decay of the local energy for the elastic wave equations. Comm. Math. Phys. 215 (2000) 375-408. | MR | Zbl
,[3] Carleman estimates and decay rate of the local energy for the Neumann problem of elasticity. Progr. Nonlinear Differ. Equations Appl. 46 (2001) 15-36. | MR | Zbl
,[4] Unicité et contrôle pour le système de Lamé. ESAIM: COCV 6 (2001) 561-592. | Numdam | MR | Zbl
,[5] Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems 18 (2002) 1537-1554. | MR | Zbl
and ,[6] Introduction to the Theory of Inverse Problems. VSP, Utrecht (2000).
,[7] Uniqueness in determining damping coefficients in hyperbolic equations, in Analytic Extension Formulas and their Applications, Kluwer, Dordrecht (2001) 27-46. | MR | Zbl
, , and ,[8] Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981) 244-247. | Zbl
and ,[9] Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables independantes. Ark. Mat. Astr. Fys. 2B (1939) 1-9. | Zbl
,[10] La propriété du prolongement unique pour un système elliptique. Le système de Lamé. J. Math. Pures Appl. 72 (1993) 475-492. | MR | Zbl
and ,[11] Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | MR | Zbl
and ,[12] Linear Differential Equations of Principal Type. Consultants Bureau New York (1986). | MR | Zbl
,[13] Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, in Nonlinear Partial Differential Equations, Vol. 14, Collège de France Seminar, Elsevier-Gauthier Villars. Ser. Appl. Math. 31 (2002) 329-350. | Zbl
, , and ,[14] The Linear Theory of Elasticity, in Encyclopedia of Physics, Vol. VIa/2, Mechanics of Solids II, C. Truesdell Ed., Springer-Verlag, Berlin (1972).
,[15] Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). | MR | Zbl
,[16] Uniqueness in inverse problems for the isotropic Lamé system. J. Math. Sci. Univ. Tokyo 5 (1998) 627-692. | MR | Zbl
, and ,[17] Controllability of parabolic equations. Mat. Sbornik 6 (1995) 109-132. | MR | Zbl
,[18] On Carleman estimates for hyperbolic equations. Asymptotic Analysis (2002) 32 185-220. | MR | Zbl
,[19] An inverse problem for the dynamical Lamé system with two sets of boundary data. Commun. Pure Appl. Math. 56 (2003) 1366-1382. | MR | Zbl
, and ,[20] New realization on the pseudoconvexity and its application to an inverse problem (preprint).
, and ,[21] Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Problems 14 (1998) 1229-1245. | MR | Zbl
and ,[22] Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Problems 17 (2001) 717-728. | MR | Zbl
and ,[23] Global uniqueness and stability in determining coefficients of wave equations. Commun. Partial Differ. Equations 26 (2001) 1409-1425. | MR | Zbl
and ,[24] Determination of a coefficient in an acoustic equation with a single measurement. Inverse Problems 19 (2003) 151-171. | MR | Zbl
and ,[25] Remarks on Carleman estimates and controllability for the Lamé system. Journées Équations aux Dérivées Partielles, Forges-les-Eaux, 3-7 juin 2002, GDR 2434 (CNRS) 1-19. | Numdam | MR
and ,[26] Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. Res. Inst. Math. Sci. 39 (2003) 227-274. | MR | Zbl
and ,[27] Carleman estimate for a stationary isotropic Lamé system and the applications. Appl. Anal. 83 (2004) 243-270. | MR | Zbl
and ,[28] A nonhyperbolic Cauchy problem for and its applications to elasticity theory. Comm. Pure Appl. Math. 39 (1986) 747-767. | MR | Zbl
,[29] Inverse Source Problems. American Mathematical Society, Providence, Rhode Island (1990). | MR | Zbl
,[30] Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998). | MR | Zbl
,[31] Carleman estimate with the Neumann boundary condition and its applications to the observability inequality and inverse hyperbolic problems. Contem. Math. 268 (2000) 191-225. | MR | Zbl
and ,[32] Stability estimates for ill-posed Cauchy problems involving hyperbolic equations and inequalities. Appl. Anal. 50 (1993) 93-102. | MR | Zbl
and ,[33] Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik 58 (1987) 267-277. | MR | Zbl
,[34] On stability estimates in multidimensional inverse problems for differential equations. Soviet Math. Dokl. 38 (1989) 614-617. | MR | Zbl
,[35] Inverse problems and Carleman estimates. Inverse Problems 8 (1992) 575-596. | MR | Zbl
,[36] Pseudo-differential Operators. MIT Press, Cambrige (1981). | Zbl
,[37] Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Cambridge University Press, Cambridge (2000). | Zbl
and ,[38] Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). | MR | Zbl
,[39] Contrôlabilité exacte perturbations et stabilisation de systèmes distribués. Masson, Paris (1988). | Zbl
,[40] On a global estimate in a linear inverse hyperbolic problem. Inverse Problems 12 (1996) 995-1002. | MR | Zbl
and ,[41] Generic well-posedness in a multidimensional hyperbolic inverse problem. J. Inverse Ill-posed Problems 5 (1997) 55-83. | MR | Zbl
and ,[42] An inverse problem in elastodynamics: uniqueness of the wave speeds in the interior. J. Differ. Equations 162 (2000) 300-325. | MR | Zbl
,[43] Unique continuation for weak solutions of the wave equation plus a potential. J. Math. Pures. Appl. 71 (1992) 455-467. | MR | Zbl
,[44] Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures. Appl. 75 (1996) 367-408. | MR | Zbl
,[45] A priori estimates of Carleman's type in domains with boundary. J. Math. Pures. Appl. 73 (1994) 355-387. | Zbl
,[46] Pseudodifferential Operators. Princeton University Press, Princeton, New Jersey (1981). | MR | Zbl
,[47] Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991). | MR | Zbl
,[48] Inverse Problems for Differential Equations of Elasticity. Nauka, Novosibirsk (1990). | MR | Zbl
,[49] Singularities of solutions to the boundary value problems for elastic and Maxwell's equations. Japan J. Math. 14 (1988) 119-163. | Zbl
,[50] Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 65-98. | MR | Zbl
,[51] Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim. 39 (2001) 812-834. | MR | Zbl
,[52] Uniqueness and Non-uniqueness in the Cauchy Problem. Birkhäuser, Boston, Basel, Berlin, (1983). | Zbl
,Cité par Sources :