Let
Mots-clés : inverse parabolic problem, Carleman estimate, Lipschitz stability
@article{COCV_2009__15_3_525_0, author = {Yuan, Ganghua and Yamamoto, Masahiro}, title = {Lipschitz stability in the determination of the principal part of a parabolic equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {525--554}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008043}, mrnumber = {2542571}, zbl = {1182.35238}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv:2008043/} }
TY - JOUR AU - Yuan, Ganghua AU - Yamamoto, Masahiro TI - Lipschitz stability in the determination of the principal part of a parabolic equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 525 EP - 554 VL - 15 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008043/ DO - 10.1051/cocv:2008043 LA - en ID - COCV_2009__15_3_525_0 ER -
%0 Journal Article %A Yuan, Ganghua %A Yamamoto, Masahiro %T Lipschitz stability in the determination of the principal part of a parabolic equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 525-554 %V 15 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008043/ %R 10.1051/cocv:2008043 %G en %F COCV_2009__15_3_525_0
Yuan, Ganghua; Yamamoto, Masahiro. Lipschitz stability in the determination of the principal part of a parabolic equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 525-554. doi : 10.1051/cocv:2008043. https://www.numdam.org/articles/10.1051/cocv:2008043/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Non-standard and Improperly Posed Problems. Academic Press, San Diego (1997).
and ,[3] Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Probl. 18 (2002) 1537-1554. | MR | Zbl
and ,[4] Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation. Inverse Probl. 20 (2004) 1033-1052. | MR | Zbl
,[5] Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation. J. Math. Pures Appl. 85 (2006) 193-224. | MR | Zbl
and ,[6] Analyse Fonctionnelle. Masson, Paris (1983). | MR | Zbl
,[7] Introduction to the Theory of Inverse Probl. VSP, Utrecht (2000). | Zbl
,[8] Global uniqueness of a class of multidimensional inverse problems. Soviet Math. Dokl. 24 (1981) 244-247. | Zbl
and ,[9] Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dyn. Contr. Syst. 2 (1996) 449-483. | MR | Zbl
, and ,[10] One new strategy for a priori choice of regularizing parameters in Tikhonov's regularization. Inverse Probl. 16 (2000) L31-L38. | MR | Zbl
and ,[11] Coefficient Inverse Problems for Parabolic Type Equations and Their Application. VSP, Utrecht (2001).
,[12] On uniqueness of recovery of the discontinuous conductivity coefficient of a parabolic equation. SIAM J. Math. Anal. 28 (1997) 49-59. | MR | Zbl
and ,[13] Carleman estimates with two large parameters and applications. Contemp. Math. 268 (2000) 117-136. | MR | Zbl
and ,[14] Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 31-61. | MR | Zbl
, and ,[15] Controllability of Evolution Equations, in Lecture Notes Series 34, Seoul National University, Seoul, South Korea (1996). | MR | Zbl
and ,[16] Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (2001). | MR | Zbl
and ,[17] Exact and approximate controllability for distributed parameter systems. Acta Numer. 3 (1994) 269-378. | MR | Zbl
and ,[18] Linear Partial Differential Operators. Springer-Verlag, Berlin (1963). | MR | Zbl
,[19] Controllability of parabolic equations. Sb. Math. 186 (1995) 879-900. | MR | Zbl
,[20] Lipschitz stability in inverse parabolic problems by the Carleman estimate. Inverse Probl. 14 (1998) 1229-1245. | MR | Zbl
and ,[21] Global Lipschitz stability in an inverse hyperbolic problem by interior observations. Inverse Probl. 17 (2001) 717-728. | MR | Zbl
and ,[22] Carleman estimate for a parabolic equation in a Sobolev space of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, Marcel Dekker, New York (2001) 113-137. | MR | Zbl
and ,[23] Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19 (2003) 151-171. | MR | Zbl
and ,[24] Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS Kyoto Univ. 39 (2003) 227-274. | MR | Zbl
and ,[25] Inverse Problems for Partial Differential Equations. Springer-Verlag, Berlin (1998), (2005). | MR | Zbl
,[26] Identification of the diffusion coefficient in a one-dimensional parabolic equation. Inverse Probl. 16 (2000) 665-680. | MR | Zbl
and ,[27] Inverse Problems for Equations of Parabolic Type. VNTL Publishers, Lviv, Ukraine (2003). | MR | Zbl
,[28] Carleman estimates and inverse problems for second order hyperbolic equations. Math. USSR Sbornik 58 (1987) 267-277. | MR | Zbl
,[29] Inverse problems in the “large” and Carleman bounds. Diff. Equ. 20 (1984) 755-760. | Zbl
,[30] Inverse problems and Carleman estimates. Inverse Probl. 8 (1992) 575-596. | MR | Zbl
,[31] Estimates of initial conditions of parabolic equations and inequalities via lateral Cauchy data. Inverse Probl. 22 (2006) 495-514. | MR | Zbl
,[32] Carleman Estimates for Coefficient Inverse Problems and Numerical Applications. VSP, Utrecht (2004). | MR | Zbl
and ,[33] Lipschitz stability of an inverse problem for an accoustic equation. Appl. Anal. 85 (2006) 515-538. | MR | Zbl
and ,[34] M1986). | Zbl
[35] Non-homogeneous Boundary Value Problems and Applications. Springer-Verlag, Berlin (1972). | Zbl
and ,[36] Improperly Posed Problems in Partial Differential Equations. SIAM, Philadelphia (1975). | MR | Zbl
,[37] Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl
,[38] Unique continuation for some evolution equations. J. Diff. Eq. 66 (1987) 118-139. | MR | Zbl
and ,[39] On the boundary behavior of solutions to elliptic and parabolic equations - with applications to boundary control for parabolic equations. SIAM J. Contr. Opt. 16 (1978) 593-598. | MR | Zbl
and ,[40] Uniqueness and stability in multidimensional hyperbolic inverse problems. J. Math. Pures Appl. 78 (1999) 65-98. | MR | Zbl
,[41] Simultaneous reconstruction of the initial temperature and heat radiative coefficient. Inverse Probl. 17 (2001) 1181-1202. | MR | Zbl
and ,- A parabolic multiscale inverse problem approached via homogenization: A numerical method, Journal of Mathematical Analysis and Applications, Volume 544 (2025) no. 2, p. 129073 | DOI:10.1016/j.jmaa.2024.129073
- An inverse problem for a generalized FitzHugh–Nagumo type system, Applicable Analysis, Volume 103 (2024) no. 11, p. 1990 | DOI:10.1080/00036811.2023.2271950
- Carleman estimate and applications for a heat equation with multiple singularities, Applicable Analysis, Volume 103 (2024) no. 18, p. 3425 | DOI:10.1080/00036811.2024.2355658
- Stability and regularization for ill-posed Cauchy problem of a stochastic parabolic differential equation, Inverse Problems, Volume 40 (2024) no. 11, p. 115005 | DOI:10.1088/1361-6420/ad7f80
- An inverse problem for the transmission wave equation with Kelvin–Voigt damping, Applicable Analysis, Volume 102 (2023) no. 13, p. 3710 | DOI:10.1080/00036811.2022.2091550
- Local logarithmic stability of an inverse coefficient problem for a singular heat equation with an inverse-square potential, Applicable Analysis, Volume 102 (2023) no. 7, p. 1995 | DOI:10.1080/00036811.2021.2011246
- A Coefficient Inverse Problem for the Mean Field Games System, Applied Mathematics Optimization, Volume 88 (2023) no. 2 | DOI:10.1007/s00245-023-10042-0
- An inverse problem for a hyperbolic system in a bounded domain, Comptes Rendus. Mathématique, Volume 361 (2023) no. G3, p. 653 | DOI:10.5802/crmath.431
- Boundary null controllability for the heat equation with dynamic boundary conditions, Evolution Equations and Control Theory, Volume 12 (2023) no. 2, p. 542 | DOI:10.3934/eect.2022041
- The problem of determining multiple coefficients in an ultrahyperbolic equation, Journal of Inverse and Ill-posed Problems, Volume 31 (2023) no. 6, p. 937 | DOI:10.1515/jiip-2022-0091
- Convergence analysis of a coefficient inverse problem for the semi-discrete damped wave equation, Applicable Analysis, Volume 101 (2022) no. 4, p. 1430 | DOI:10.1080/00036811.2020.1781826
- Identification of Matrix Diffusion Coefficient in a Parabolic PDE, Computational Methods in Applied Mathematics, Volume 22 (2022) no. 2, p. 413 | DOI:10.1515/cmam-2021-0061
- Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates, Journal of Inverse and Ill-posed Problems, Volume 30 (2022) no. 5, p. 621 | DOI:10.1515/jiip-2020-0045
- Global Lipschitz stability for a fractional inverse transport problem by Carleman estimates, Applicable Analysis, Volume 100 (2021) no. 4, p. 752 | DOI:10.1080/00036811.2019.1620931
- Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation, Discrete Continuous Dynamical Systems - S, Volume 14 (2021) no. 8, p. 2671 | DOI:10.3934/dcdss.2020394
- Inverse problems for stochastic parabolic equations with additive noise, Journal of Inverse and Ill-posed Problems, Volume 29 (2021) no. 1, p. 93 | DOI:10.1515/jiip-2017-0003
- A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide, Mathematical Control Related Fields, Volume 11 (2021) no. 4, p. 965 | DOI:10.3934/mcrf.2020054
- Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem, Numerische Mathematik, Volume 147 (2021) no. 1, p. 29 | DOI:10.1007/s00211-020-01162-8
- Inverse Problems for a Compressible Fluid System, Inverse Problems and Related Topics, Volume 310 (2020), p. 101 | DOI:10.1007/978-981-15-1592-7_6
- Monotonicity-Based Inversion of the Fractional Schrödinger Equation II. General Potentials and Stability, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 1, p. 402 | DOI:10.1137/19m1251576
- Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes, Inverse Problems, Volume 35 (2019) no. 2, p. 024005 | DOI:10.1088/1361-6420/aaf6fc
- Unique continuation for a reaction-diffusion system with cross diffusion, Journal of Inverse and Ill-posed Problems, Volume 27 (2019) no. 4, p. 511 | DOI:10.1515/jiip-2017-0094
- Logarithmic stability of an inverse problem for Biot’s consolidation system in poro-elasticity, Journal of Physics Communications, Volume 3 (2019) no. 11, p. 115022 | DOI:10.1088/2399-6528/ab596d
- Global Uniqueness and Lipschitz-Stability for the Inverse Robin Transmission Problem, SIAM Journal on Applied Mathematics, Volume 79 (2019) no. 2, p. 525 | DOI:10.1137/18m1205388
- Quadratic convergence of Levenberg-Marquardt method for elliptic and parabolic inverse robin problems, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 3, p. 1085 | DOI:10.1051/m2an/2018016
- On the identification of multiple space dependent ionic parameters in cardiac electrophysiology modelling, Inverse Problems, Volume 34 (2018) no. 3, p. 035005 | DOI:10.1088/1361-6420/aaa72e
- Carleman estimate for a linearized bidomain model in electrocardiology and its applications, Nonlinear Differential Equations and Applications NoDEA, Volume 25 (2018) no. 1 | DOI:10.1007/s00030-018-0496-8
- Hölder stability of an inverse problem for a strongly coupled reaction-diffusion system, IMA Journal of Applied Mathematics (2017), p. hxw058 | DOI:10.1093/imamat/hxw058
- Conditional stability in determination of initial data for stochastic parabolic equations, Inverse Problems, Volume 33 (2017) no. 3, p. 035014 | DOI:10.1088/1361-6420/aa5d7a
- Stability result for two coefficients in a coupled hyperbolic-parabolic system, Journal of Inverse and Ill-posed Problems, Volume 25 (2017) no. 3, p. 265 | DOI:10.1515/jiip-2015-0017
- An inverse problem for Maxwell's equations in a uniaxially anisotropic medium, Journal of Mathematical Analysis and Applications, Volume 456 (2017) no. 2, p. 1415 | DOI:10.1016/j.jmaa.2017.06.053
- Stability for Some Inverse Problems for Transport Equations, SIAM Journal on Mathematical Analysis, Volume 48 (2016) no. 4, p. 2319 | DOI:10.1137/15m1038128
- Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology, Networks and Heterogeneous Media, Volume 10 (2015) no. 2, p. 369 | DOI:10.3934/nhm.2015.10.369
- Global Lipschitz stability in determining coefficients of the radiative transport equation, Inverse Problems, Volume 30 (2014) no. 3, p. 035010 | DOI:10.1088/0266-5611/30/3/035010
- Uniqueness and stability of an inverse problem for a phase field model using data from one component, Computers Mathematics with Applications, Volume 66 (2013) no. 10, p. 2126 | DOI:10.1016/j.camwa.2013.09.005
- Uniqueness and stability of an inverse kernel problem for type III thermoelasticity, Journal of Mathematical Analysis and Applications, Volume 402 (2013) no. 1, p. 242 | DOI:10.1016/j.jmaa.2013.01.023
- Lipschitz stability in an inverse problem for the main coefficient of a Kuramoto–Sivashinsky type equation, Journal of Mathematical Analysis and Applications, Volume 408 (2013) no. 1, p. 275 | DOI:10.1016/j.jmaa.2013.05.050
- Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems, Volume 28 (2012) no. 9, p. 095012 | DOI:10.1088/0266-5611/28/9/095012
- Carleman estimate for a strongly damped wave equation and applications to an inverse problem, Mathematical Methods in the Applied Sciences, Volume 35 (2012) no. 4, p. 427 | DOI:10.1002/mma.1570
- Conditional stability and uniqueness for determining two coefficients in a hyperbolic–parabolic system, Inverse Problems, Volume 27 (2011) no. 7, p. 075013 | DOI:10.1088/0266-5611/27/7/075013
- Carleman estimates for parabolic equations and applications, Inverse Problems, Volume 25 (2009) no. 12, p. 123013 | DOI:10.1088/0266-5611/25/12/123013
Cité par 41 documents. Sources : Crossref