Minimising convex combinations of low eigenvalues
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 442-459.

We consider the variational problem         inf{αλ1(Ω) + βλ2(Ω) + (1 - α - β)λ3(Ω) | Ω open in ℝn, |Ω| ≤ 1}, for α, β ∈ [0, 1], α + β ≤ 1, where λk(Ω) is the kth eigenvalue of the Dirichlet Laplacian acting in L2(Ω) and |Ω| is the Lebesgue measure of Ω. We investigate for which values of α, β every minimiser is connected.

DOI : 10.1051/cocv/2013070
Classification : 49Q10, 49R50, 35P15
Mots-clés : eigenvalues, Dirichlet-Laplacian, shape optimization
@article{COCV_2014__20_2_442_0,
     author = {Iversen, Mette and Mazzoleni, Dario},
     title = {Minimising convex combinations of low eigenvalues},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {442--459},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013070},
     mrnumber = {3264211},
     zbl = {1290.49096},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013070/}
}
TY  - JOUR
AU  - Iversen, Mette
AU  - Mazzoleni, Dario
TI  - Minimising convex combinations of low eigenvalues
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 442
EP  - 459
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013070/
DO  - 10.1051/cocv/2013070
LA  - en
ID  - COCV_2014__20_2_442_0
ER  - 
%0 Journal Article
%A Iversen, Mette
%A Mazzoleni, Dario
%T Minimising convex combinations of low eigenvalues
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 442-459
%V 20
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013070/
%R 10.1051/cocv/2013070
%G en
%F COCV_2014__20_2_442_0
Iversen, Mette; Mazzoleni, Dario. Minimising convex combinations of low eigenvalues. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 442-459. doi : 10.1051/cocv/2013070. http://archive.numdam.org/articles/10.1051/cocv/2013070/

[1] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972). | Zbl

[2] M.S. Ashbaugh and R. Benguria, Proof of the Payne−Pölya−Weinberger conjecture. Bull. Amer. Math. Soc. 25 (1991) 19-29. | MR | Zbl

[3] M.S. Ashbaugh and R. Benguria, Isoperimetric bound for λ3/λ2 for the membrane problem. Duke Math. J. 63 (1991) 333-341. | MR | Zbl

[4] M. Van Den Berg, On Rayleigh's formula for the first Dirichlet eigenvalue of a radial perturbation of a ball. J. Geometric Anal. 23 (2013) 1427-1440. | MR

[5] M. Van Den Berg and M. Iversen, On the minimization of Dirichlet eigenvalues of the Laplace operator. J. Geometric Anal. 23 (2013) 660-676. | MR | Zbl

[6] L. Brasco, C. Nitsch and A. Pratelli, On the boundary of the attainable set of the Dirichlet spectrum. Z. Angew. Math. Phys. 64 (2013) 591-597. | MR | Zbl

[7] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Prog. Nonlinear Differ. Eq. Appl. Birkhäuser Verlag, Boston (2005). | MR | Zbl

[8] D. Bucur, G. Buttazzo and I. Figueiredo, On the attainable eigenvalues of the Laplace operator. SIAM J. Math. Anal. 30 (1999) 527-536. | MR | Zbl

[9] D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | MR | Zbl

[10] G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal. 122 (1993) 183-195. | MR | Zbl

[11] R. Courant and D. Hilbert, Methods of Mathematical Physics, vol. 2. Wiley-VCH, New York (1962). | Zbl

[12] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Frontiers Math. Birkhäuser Verlag, Basel (2006). | MR | Zbl

[13] D. Mazzoleni and A. Pratelli, Existence of minimizers for spectral problems. J. Math. Pures Appl. 100 (2013) 433-453. DOI: http://dx.doi.org/10.1016/j.matpur.2013.01.008. | MR | Zbl

[14] B. Osting and C.-Y. Kao, Minimal convex combinations of three sequential Laplace−Dirichlet eigenvalues, Appl. Math. Optim. 69 (2014) 123-139. | MR

[15] S.A. Wolf, Asymptotic and Numerical Analysis of Linear and Nonlinear Eigenvalue Problems, Ph.D. Thesis. Stanford University (1993). | MR

[16] S.A. Wolf and J.B. Keller, Range of the First Two Eigenvalues of the Laplacian. Proc. R. Soc. London A 447 (1994) 397-412. | MR | Zbl

Cité par Sources :