Minimum-time strong optimality of a singular arc: The multi-input non involutive case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 786-810.

We consider the minimum-time problem for a multi-input control-affine system, where we assume that the controlled vector fields generate a non-involutive distribution of constant dimension, and where we do not assume a priori bounds for the controls. We use Hamiltonian methods to prove that the coercivity of a suitable second variation associated to a Pontryagin singular arc is sufficient to prove its strong-local optimality. We provide an application of the result to a generalization of Dubins problem.

Reçu le :
DOI : 10.1051/cocv/2015026
Classification : 49J15, 49J30, 49K15, 49K30
Mots-clés : Control-affine systems, singular extremals, minimum-time problem, sufficient optimality conditions, second variation, Hamiltonian methods
Chittaro, Francesca 1, 2 ; Stefani, Gianna 3

1 Aix Marseille Université, CNRS, ENSAM, LSIS UMR 7296, 13397 Marseille, France
2 Université de Toulon, CNRS, LSIS UMR 7296, 83957 La Garde, France
3 DIMAI, via S. Marta 3−50137 Firenze, Italy
@article{COCV_2016__22_3_786_0,
     author = {Chittaro, Francesca and Stefani, Gianna},
     title = {Minimum-time strong optimality of a singular arc: {The} multi-input non involutive case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {786--810},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015026},
     zbl = {1344.49034},
     mrnumber = {3527944},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015026/}
}
TY  - JOUR
AU  - Chittaro, Francesca
AU  - Stefani, Gianna
TI  - Minimum-time strong optimality of a singular arc: The multi-input non involutive case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 786
EP  - 810
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015026/
DO  - 10.1051/cocv/2015026
LA  - en
ID  - COCV_2016__22_3_786_0
ER  - 
%0 Journal Article
%A Chittaro, Francesca
%A Stefani, Gianna
%T Minimum-time strong optimality of a singular arc: The multi-input non involutive case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 786-810
%V 22
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015026/
%R 10.1051/cocv/2015026
%G en
%F COCV_2016__22_3_786_0
Chittaro, Francesca; Stefani, Gianna. Minimum-time strong optimality of a singular arc: The multi-input non involutive case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 786-810. doi : 10.1051/cocv/2015026. http://archive.numdam.org/articles/10.1051/cocv/2015026/

A.A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag (2004). | MR | Zbl

A. Agrachev, G. Stefani and P. Zezza, An invariant second variation in optimal control. Int. J. Control 71 (1998) 689–715. | DOI | MR | Zbl

M.S. Aronna, J.F. Bonnans, A.V. Dmitruk and P. Lotito, Quadratic order conditions for bang-singular extremals. AIMS J. Numer. Algebra Control Optim. 2 (2012) 511–546. | DOI | MR | Zbl

A. Bacciotti and G. Stefani, On the relationship between global and local controllability. Math. Syst. Theory 16 (1983) 79–91. | DOI | MR | Zbl

R.M. Bianchini, Good needle-like variations. In vol. 64 of Proceedings of Symposia in Pure Mathematics (1999). | MR | Zbl

R.M. Bianchini, Variational cones and high-order maximum principles. Technical report, Dipartimento di Matematica “Ulisse Dini”, viale Morgagni 67/a, Firenze (1994).

R.M. Bianchini, Variational Approach to Some Optimization Control Problems. In Geometry in Nonlinear Control and Differential Inclusions. Edited by G. Ferreyra R. Gardner H. Hermes and H. Sussmann (1995). | Zbl

R.M. Bianchini and G. Stefani, A High Order Maximum Principle, in Analysis and Control of Linear Systems. Edited by R.E. Saeks C.I. Byrnes, C.F. Martin (1988). | Zbl

A. Bressan and F. Rampazzo, Impulsive control systems with commutative vector fields. J. Optim. Theory Appl. 71 (1991) 67–84. | DOI | MR | Zbl

A. Bressan and F Rampazzo, Impulsive control systems without commutativity assumptions. J. Optim. Theory Appl. 81 (1994) 435–457. | DOI | MR | Zbl

F.C. Chittaro and G. Stefani, Singular extremals in multi-input time-optimal problem: a sufficient condition. Control Cyber. 39 (2010). | MR | Zbl

F.C. Chittaro and G. Stefani, Minimum-Time Strong Optimality of a Singular Arc: extended Dubins Problem. In 52nd IEEE Conference on Decision and Control (2013).

B.D. Craven, Control and Optimization. Chapman & Hall Mathematics Series. Chapman & Hall, London, New York (1995). | MR | Zbl

A. V. Dmitruk. Quadratic condition for a weak minimum for singular regimes in optimal control problems. Soviet Math Dokl. 18 (1977). | Zbl

A. V. Dmitruk, Jacobi type conditions for singular extremals. Control Cybernet. 37 (2008) 285–306. | MR | Zbl

R. Gabasov and F.M. Kirillova, High order necessary conditions for optimality. SIAM J. Control 10 (1972) 127–168. | DOI | MR | Zbl

B. S. Goh, The second variation for singular Bolza problems. SIAM J. Control Optim. 4 (1966) 309–325. | DOI | MR | Zbl

M. Guerra and A. Sarychev, Fréchet generalized trajectories and minimizers for variational problems of low coercivity. J. Dyn. Contr. Syst. 21 (2015) 351–377. | DOI | MR | Zbl

M.R. Hestenes, Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations. Pac. J. Math. 1 (1951) 525–581. | DOI | MR | Zbl

V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). | MR | Zbl

V. Jurdjevic and F. Monroy-Pérez, Variational Problems on Lie Groups and Their Homogeneous Spaces: Elastic Curves, Tops, and Constrained Geodesic Problems (2002). | MR | Zbl

A.J. Krener, A generalization of Chow’s theorem and the bang-bang theorem to nonlinear control problems. SIAM J. Control Optim. 12 (1974) 43–52. | DOI | MR | Zbl

J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems. Texts Appl. Math. Springer (1999). | MR | Zbl

E.J. McShane, Unified Integration. Academic Press (1983). | MR | Zbl

L. Poggiolini and G. Stefani, Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17 (2011) 469–514. | DOI | MR | Zbl

G. Stefani, Minimum-time optimality of a singular arc: second order sufficient conditions. In vol. 1 of 43rd IEEE Conference on Decision and Control (2004).

G. Stefani, Strong Optimality of Singular Trajectories. Geometric Control and nonsmooth analysis. Edited by F. Ancona A. Bressan P. Cannarsa F. Clarke and P. R. Wolenski (2008). | MR | Zbl

G. Stefani and P. Zezza. Constrained regular LQ-control problems. SIAM J. Control Optim. 35 (1997) 876–900. | DOI | MR | Zbl

Cité par Sources :