When is Ω a cogenerator in a topos ?
Cahiers de topologie et géométrie différentielle, Tome 16 (1975) no. 1, pp. 3-15.
@article{CTGDC_1975__16_1_3_0,
     author = {Borceux, Francis},
     title = {When is $\Omega $ a cogenerator in a topos ?},
     journal = {Cahiers de topologie et g\'eom\'etrie diff\'erentielle},
     pages = {3--15},
     publisher = {Dunod \'editeur, publi\'e avec le concours du CNRS},
     volume = {16},
     number = {1},
     year = {1975},
     zbl = {0311.18006},
     mrnumber = {382393},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_1975__16_1_3_0/}
}
TY  - JOUR
AU  - Borceux, Francis
TI  - When is $\Omega $ a cogenerator in a topos ?
JO  - Cahiers de topologie et géométrie différentielle
PY  - 1975
SP  - 3
EP  - 15
VL  - 16
IS  - 1
PB  - Dunod éditeur, publié avec le concours du CNRS
UR  - http://archive.numdam.org/item/CTGDC_1975__16_1_3_0/
LA  - en
ID  - CTGDC_1975__16_1_3_0
ER  - 
%0 Journal Article
%A Borceux, Francis
%T When is $\Omega $ a cogenerator in a topos ?
%J Cahiers de topologie et géométrie différentielle
%D 1975
%P 3-15
%V 16
%N 1
%I Dunod éditeur, publié avec le concours du CNRS
%U http://archive.numdam.org/item/CTGDC_1975__16_1_3_0/
%G en
%F CTGDC_1975__16_1_3_0
Borceux, Francis. When is $\Omega $ a cogenerator in a topos ?. Cahiers de topologie et géométrie différentielle, Tome 16 (1975) no. 1, pp. 3-15. http://archive.numdam.org/item/CTGDC_1975__16_1_3_0/

[1] F. Borceux and G.M. Kelly, A notion of limit for enriched categories, Bul. Austr. Math. Soc. 12 (1975), 49-72. | MR | Zbl

[2] S. Eilenberg and G.M. Kelly, Closed categories, Proc. Conf. on Cat. Alg., La Jolla (1965). | MR | Zbl

[3] S. Eilenberg and J.C. Moore, Adjoint functors and triples, Ill. J. of Math. V-2 (1965), 381-398. | MR | Zbl

[4] P. Freyd, Some aspects of topoi, Bull. of the Austr. Math. Soc. 7-1 (1972), 1-76. | MR | Zbl

[5] W. Mitchell, Boolean topoi and the theory of sets, J. Pure and App. Alg. (Oct. 1972). | MR | Zbl

[6] M. Tierney, Sheaf theory and the continuum hypothesis, Proc. of the Halifax Conf. on Category theory, intuitionistic Logic and Algebraic Geometry, Springer, Lect. Notes in Math. 274 (1973). | MR | Zbl