@article{CTGDC_2010__51_3_162_0, author = {Gray, James Richard Andrew}, title = {Representability of the split extension functor for categories of generalized lie algebras}, journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques}, eid = {1}, pages = {162--181}, publisher = {Andr\'ee CHARLES EHRESMANN}, volume = {51}, number = {3}, year = {2010}, mrnumber = {2731214}, zbl = {1226.18009}, language = {en}, url = {http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/} }
TY - JOUR AU - Gray, James Richard Andrew TI - Representability of the split extension functor for categories of generalized lie algebras JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques PY - 2010 SP - 162 EP - 181 VL - 51 IS - 3 PB - Andrée CHARLES EHRESMANN UR - http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/ LA - en ID - CTGDC_2010__51_3_162_0 ER -
%0 Journal Article %A Gray, James Richard Andrew %T Representability of the split extension functor for categories of generalized lie algebras %J Cahiers de Topologie et Géométrie Différentielle Catégoriques %D 2010 %P 162-181 %V 51 %N 3 %I Andrée CHARLES EHRESMANN %U http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/ %G en %F CTGDC_2010__51_3_162_0
Gray, James Richard Andrew. Representability of the split extension functor for categories of generalized lie algebras. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article no. 1, 20 p. http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/
[1] Internal object actions, Commentationes Mathematicae Universitatis Carolinae, 46 (2), 2005, 235-255. | EuDML | MR | Zbl
, and ,[2] On the representability of actions in a semi-abelian category, Theory and Applications of Categories, 14 (11), 2005, 244-286. | EuDML | MR | Zbl
, , and ,[3] Protomodularity, Descent and semidirect products, Theory and Applications of Categories, 4 (2), 1998, 37-46. | EuDML | MR | Zbl
and ,[4] Internal crossed modules, Georgian Mathematical Journal, 10 (1), 2003, 99-114. | EuDML | MR | Zbl
,[5] An operadic approach to internal structures, Applied Categorical Structures, 13 (3), 2005, 205-222. | MR | Zbl
and ,[6] Categories for the Working Mathematician, Springer Science, New York, (2nd Edition), 1997. | MR | Zbl
,