Representability of the split extension functor for categories of generalized lie algebras
Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article no. 1, 20 p.
@article{CTGDC_2010__51_3_162_0,
     author = {Gray, James Richard Andrew},
     title = {Representability of the split extension functor for categories of generalized lie algebras},
     journal = {Cahiers de Topologie et G\'eom\'etrie Diff\'erentielle Cat\'egoriques},
     eid = {1},
     pages = {162--181},
     publisher = {Andr\'ee CHARLES EHRESMANN},
     volume = {51},
     number = {3},
     year = {2010},
     mrnumber = {2731214},
     zbl = {1226.18009},
     language = {en},
     url = {http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/}
}
TY  - JOUR
AU  - Gray, James Richard Andrew
TI  - Representability of the split extension functor for categories of generalized lie algebras
JO  - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY  - 2010
SP  - 162
EP  - 181
VL  - 51
IS  - 3
PB  - Andrée CHARLES EHRESMANN
UR  - http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/
LA  - en
ID  - CTGDC_2010__51_3_162_0
ER  - 
%0 Journal Article
%A Gray, James Richard Andrew
%T Representability of the split extension functor for categories of generalized lie algebras
%J Cahiers de Topologie et Géométrie Différentielle Catégoriques
%D 2010
%P 162-181
%V 51
%N 3
%I Andrée CHARLES EHRESMANN
%U http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/
%G en
%F CTGDC_2010__51_3_162_0
Gray, James Richard Andrew. Representability of the split extension functor for categories of generalized lie algebras. Cahiers de Topologie et Géométrie Différentielle Catégoriques, Tome 51 (2010) no. 3, article  no. 1, 20 p. http://archive.numdam.org/item/CTGDC_2010__51_3_162_0/

[1] F. Borceux, G. Janelidze and G. M. Kelly, Internal object actions, Commentationes Mathematicae Universitatis Carolinae, 46 (2), 2005, 235-255. | EuDML | MR | Zbl

[2] F. Borceux, G. Janelidze, and G.M. Kelly, On the representability of actions in a semi-abelian category, Theory and Applications of Categories, 14 (11), 2005, 244-286. | EuDML | MR | Zbl

[3] D. Bourn and G. Janelidze, Protomodularity, Descent and semidirect products, Theory and Applications of Categories, 4 (2), 1998, 37-46. | EuDML | MR | Zbl

[4] G. Janelidze, Internal crossed modules, Georgian Mathematical Journal, 10 (1), 2003, 99-114. | EuDML | MR | Zbl

[5] S. Lack and S. Paoli, An operadic approach to internal structures, Applied Categorical Structures, 13 (3), 2005, 205-222. | MR | Zbl

[6] S. Mac Lane, Categories for the Working Mathematician, Springer Science, New York, (2nd Edition), 1997. | MR | Zbl