On the complexity of computable real sequences
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 21 (1987) no. 2, pp. 175-180.
@article{ITA_1987__21_2_175_0,
     author = {Tor\'an, Jacobo},
     title = {On the complexity of computable real sequences},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {175--180},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {1987},
     mrnumber = {894709},
     zbl = {0634.68032},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1987__21_2_175_0/}
}
TY  - JOUR
AU  - Torán, Jacobo
TI  - On the complexity of computable real sequences
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1987
SP  - 175
EP  - 180
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1987__21_2_175_0/
LA  - en
ID  - ITA_1987__21_2_175_0
ER  - 
%0 Journal Article
%A Torán, Jacobo
%T On the complexity of computable real sequences
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1987
%P 175-180
%V 21
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1987__21_2_175_0/
%G en
%F ITA_1987__21_2_175_0
Torán, Jacobo. On the complexity of computable real sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 21 (1987) no. 2, pp. 175-180. http://archive.numdam.org/item/ITA_1987__21_2_175_0/

1. O. Aberth, Computable Analysis, McGraw-Hill, New York, 1980. | Zbl

2. K. Ko and H. Friedman, Computational Complexity of Real Functions, Theoretical Computer Science, Vol. 20, 1982, pp. 323-352. | MR | Zbl

3. K. Ko, On the Definitions of Some Complexity Classes of Real Numbers, Math. Systems Theory, Vol. 16, 1983, pp. 95-109. | MR | Zbl

4. A. Mostowski, On Computable Real Sequences, Fund. Math., Vol. 44, 1957, pp. 37-51. | MR | Zbl

5. H. G. Rice, Recursive Real Numbers, Proc Amer. Math. Soc., Vol. 5, 1954, pp. 784-791. | MR | Zbl

6. R. M. Robinson, Review of R. Peter's Book, Rekursive Funktionen, J. Symbolic Logic, Vol. 16, 1951, pp. 280-282.

7. E. Specker, Nicht-Konstruktiv beweisbare Sätze des Analysis, J. Symbolic Logic, Vol. 14, 1949, pp. 145-158. | MR | Zbl

8. J. Torán, Computabilidad y complejidad computacional de algunos problemas del analisis real elemental, Tesina de la Universidad Complutense de Madrid. 1985.

9. A. M. Turing, On Computable Real Numbers with an Application to the Entscheidungs Problem, Proc. London Math. Soc., 1937, pp. 230-265. | JFM