Fractal geometry, Turing machines and divide-and-conquer recurrences
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 28 (1994) no. 3-4, pp. 405-423.
@article{ITA_1994__28_3-4_405_0,
     author = {Dube, S.},
     title = {Fractal geometry, {Turing} machines and divide-and-conquer recurrences},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {405--423},
     publisher = {EDP-Sciences},
     volume = {28},
     number = {3-4},
     year = {1994},
     mrnumber = {1282455},
     zbl = {0883.68056},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_1994__28_3-4_405_0/}
}
TY  - JOUR
AU  - Dube, S.
TI  - Fractal geometry, Turing machines and divide-and-conquer recurrences
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1994
SP  - 405
EP  - 423
VL  - 28
IS  - 3-4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_1994__28_3-4_405_0/
LA  - en
ID  - ITA_1994__28_3-4_405_0
ER  - 
%0 Journal Article
%A Dube, S.
%T Fractal geometry, Turing machines and divide-and-conquer recurrences
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1994
%P 405-423
%V 28
%N 3-4
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_1994__28_3-4_405_0/
%G en
%F ITA_1994__28_3-4_405_0
Dube, S. Fractal geometry, Turing machines and divide-and-conquer recurrences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 28 (1994) no. 3-4, pp. 405-423. http://archive.numdam.org/item/ITA_1994__28_3-4_405_0/

1. M. F. Barnsley, Fractals Everywhere, Academic Press, 1988. | MR | Zbl

2. J. L. Bentley, D. Haken and J. B. Saxe, A General Method for Solving Divide-and-Conquer Recurrences, SIGACT News, 1980, 12, pp. 36-44. | Zbl

3. L. Blum, M. Shub and S. Smale, On a Theory of Computation and Complexity over the Real Numbers: NP Completeness, recursive functions and universal machines, Bulletin of American Mathematical Society, 1989, 21, pp. 1-46. | MR | Zbl

4. T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algorithms, MIT Press, 1990. | MR | Zbl

5. K. Culik Ii and S. Dube, Affine Automata and Related Techniques for Generation of Complex Images, Theoretical Computer Science, 1993, 116, pp. 373-398. | MR | Zbl

6. K. Culik Ii and S. Dube, Encoding Images as Words and Languages, International Journal of Algebra and Computation, 1993, 3, No. 2, pp. 211-236. | MR | Zbl

7. S. Dube, Undecidable Problems in Fractal Geometry, Technical Report 93-71, Dept. of Math. and Comp. Sci., University of New England at Armidale, Australia. | MR

8. S. Dube, Using Fractal Geometry for Solving Divide-and-Conquer Recurrences, to appear in Journal of Aust. Math. Soc., Applied Math., Preliminary version in Proc. of ISAAC'93, Hong Kong. Lecture Notes in Computer Science, Springer-Verlag, 762, pp. 191-200. | MR | Zbl

9. K. J. Falconer, Digital Sun Dials, Paradoxical Sets and Vitushkin's Conjecture, Math Intelligencer, 1987, 9, pp. 24-27. | Zbl

10. J. Gleick, Chaos-Making a New Science, Penguin Books, 1988. | MR | Zbl

11. J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979. | MR | Zbl

12. J. Hutchinson, Fractals and Self-similarity, Indiana University Journal of Mathematics, 1981, 30, pp. 713-747. | MR | Zbl

13. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1982. | MR | Zbl

14. R. Penrose, The Emperor's New Mind, Oxford University Press, Oxford, 1990. | Zbl