@article{ITA_1999__33_1_1_0, author = {Carrasco, Rafael C. and Oncina, Jos\'e}, title = {Learning deterministic regular grammars from stochastic samples in polynomial time}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {1--19}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1705851}, zbl = {0940.68071}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_1_1_0/} }
TY - JOUR AU - Carrasco, Rafael C. AU - Oncina, José TI - Learning deterministic regular grammars from stochastic samples in polynomial time JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 1 EP - 19 VL - 33 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_1_1_0/ LA - en ID - ITA_1999__33_1_1_0 ER -
%0 Journal Article %A Carrasco, Rafael C. %A Oncina, José %T Learning deterministic regular grammars from stochastic samples in polynomial time %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 1-19 %V 33 %N 1 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_1_1_0/ %G en %F ITA_1999__33_1_1_0
Carrasco, Rafael C.; Oncina, José. Learning deterministic regular grammars from stochastic samples in polynomial time. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 1, pp. 1-19. http://archive.numdam.org/item/ITA_1999__33_1_1_0/
[1] Identifying languages from stochastic examples. Internal Report YALEU/DCS/RR-614 (1988).
,[2] Computational learning theory. Cambridge University Press, Cambridge (1992). | MR | Zbl
and ,[3] Learning stochastic regular grammars by means of a state merging method, in Grammatical Inference and Applications, R. C. Carrasco and J. Oncina Eds., Springer-Verlag, Berlin, Lecture Notes in Artificial Intelligence 862 (1994). | Zbl
and ,[4] Simulation of stochastic regular grammars through simple recurrent networks, in New Trends in Neural Computation, J. Mira, J. Cabestany and A. Prieto Eds., Springer Verlag, Lecture Notes in Computer Science 686 (1993) 210-215.
, and ,[5] Elements of information theory. John Wiley and Sons, New York (1991). | MR | Zbl
and ,[6] An introduction to probability theory and its applications, John Wiley and Sons, New York (1950). | MR | Zbl
,[7] Syntactic pattern recognition and applications, Prentice Hall, Englewood Cliffs, N. J. (1982). | Zbl
,[8] Learning and extracting finite state automata with second order recurrent neural networks. Neural Computation 4 (1992) 393-405.
, , , , and ,[9] Language identification in the limit. Inform. and Control 10 (1967) 447-474. | MR | Zbl
,[10] Probability inequalities for sums of bounded random variables. Amer. Statist. Association J. 58 (1963) 13-30. | MR | Zbl
,[11] Introduction to automata theory, languages and computation, Addison Wesley, Reading, Massachusetts (1979). | MR | Zbl
and ,[12] Random DFA's can be approximately learned from sparse uniform examples, in Proc. of the 5th Annual ACM Workshop on Computational Learning Theory (1992).
,[13] Inference of finite-state probabilistic grammars. IEEE Trans. Comput. C26 (1997) 521-536. | MR | Zbl
and ,[14] Inferring regular languages in polynomial time, in Pattern Recognition and Image Analysis, N. Pérez de la Blanca, A. Sanfeliu and E. Vidal Eds., World Scientific (1992).
and ,[15] The induction of dynamical recognizers. Machine Learning 7 (1991) 227-252.
,[16] Implicit learning of artificial grammars. J. Verbal Learning and Verbal Behaviour 6 (1967) 855-863.
,[17] On the learnability and usage of acyclic probabilistic finite automata, in Proc. of the 8th Annual Conference on Computational Learning Theory (COLT'95), ACM Press, New York (199531-40.
, and ,[18] Learning sequential structure with the real-time recurrent learning algorithm. Internat J. Neural Systems 1 (1989) 125-131.
and ,[19] Hidden Markov model induction by Bayesian model merging, in Advances in Neural Information Processing Systems 5, C. L. Giles, S. J. Hanson and J. D. Cowan Eds., Morgan Kaufman, Menlo Park, California (1993).
and ,[20] On the inference of stochastic regular grammars. Inform. and Control 38 (1978) 310-329. | MR | Zbl
and ,[21] Induction of finite-state languages using second-order recurrent networks. Neural Computation 4 (1992) 406-414.
and ,