@article{ITA_1999__33_3_227_0, author = {Preller, Anne and Duroux, P.}, title = {Normalisation of the theory $\mathbf {T}$ of {Cartesian} closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {227--257}, publisher = {EDP-Sciences}, volume = {33}, number = {3}, year = {1999}, mrnumber = {1728425}, zbl = {0936.03011}, language = {en}, url = {http://archive.numdam.org/item/ITA_1999__33_3_227_0/} }
TY - JOUR AU - Preller, Anne AU - Duroux, P. TI - Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$ JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 1999 SP - 227 EP - 257 VL - 33 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/item/ITA_1999__33_3_227_0/ LA - en ID - ITA_1999__33_3_227_0 ER -
%0 Journal Article %A Preller, Anne %A Duroux, P. %T Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$ %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 1999 %P 227-257 %V 33 %N 3 %I EDP-Sciences %U http://archive.numdam.org/item/ITA_1999__33_3_227_0/ %G en %F ITA_1999__33_3_227_0
Preller, Anne; Duroux, P. Normalisation of the theory $\mathbf {T}$ of Cartesian closed categories and conservativity of extensions $mathbf{T}[x]$ of $mathbf{T}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 33 (1999) no. 3, pp. 227-257. http://archive.numdam.org/item/ITA_1999__33_3_227_0/
[1] Categorical reconstruction of a reduction free normalisation proof, preliminary version, P. Dybjer and R. Pollacks, Eds., Proceedings CTCS '95, Springer, Lecture Notes in Computer Science 953 (1995) 182-199. | MR
, and ,[2] An inverse to the evaluation functional for typed λ-calculus, in Proc. of the 6th Annual IEEE Symposium of Logic in Computer Science (1991) 203-211.
and ,[3] Embedding of a free Cartesian Closed Category in the Category of Sets. J. Pure and Applied Algebra (to appear). | MR | Zbl
,[4] Normalization and the Yoneda Embedding, MSCS 8 (1998) 153-192. | MR | Zbl
, and ,[5] Isomorphisms of Types, Birkhaeuser (1995). | Zbl
,[6] The maximality of Cartesian Categories, Rapport Institut de Recherche de Toulouse, CNRS, 97-42-R (1997).
and ,[7] Introduction to Higher Order Categorical Logic, Cambridge University Press (1989). | MR | Zbl
and ,[8] Algebra of constructions I. The word problem for partial algebras. Inform. and Comput. 73 (1987) 29-173. | MR | Zbl
,