On the Horton-Strahler number for combinatorial tries
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 4, pp. 279-296.
@article{ITA_2000__34_4_279_0,
     author = {Nebel, Markus E.},
     title = {On the {Horton-Strahler} number for combinatorial tries},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {279--296},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {4},
     year = {2000},
     mrnumber = {1809861},
     zbl = {0966.05019},
     language = {en},
     url = {http://archive.numdam.org/item/ITA_2000__34_4_279_0/}
}
TY  - JOUR
AU  - Nebel, Markus E.
TI  - On the Horton-Strahler number for combinatorial tries
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2000
SP  - 279
EP  - 296
VL  - 34
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_2000__34_4_279_0/
LA  - en
ID  - ITA_2000__34_4_279_0
ER  - 
%0 Journal Article
%A Nebel, Markus E.
%T On the Horton-Strahler number for combinatorial tries
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2000
%P 279-296
%V 34
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_2000__34_4_279_0/
%G en
%F ITA_2000__34_4_279_0
Nebel, Markus E. On the Horton-Strahler number for combinatorial tries. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 4, pp. 279-296. http://archive.numdam.org/item/ITA_2000__34_4_279_0/

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. Dover (1970).

[2] T. M. Apostol, Introduction to Analytic Number Theory. Springer (1976). | MR | Zbl

[3] N. G. De Bruijn, D. E. Knuth and S. O. Rice, The Average Height of Planted Plane Trees. Graph Theory and Computing, edited by R.C. Read. Academic Press (1972). | MR | Zbl

[4] L. Devroye and P. Kruszewski, On the Horton-Strahler Number for Random Tries. Theoret. Informatics Appl. 30 (1996) 443-456. | Numdam | MR | Zbl

[5] M. Drmota, Asymptotic Distributions and a Multivariate Darboux Method in Enumeration Problems. J. Combin. Theory Ser. A 67 (1994) 169-184. | MR | Zbl

[6] A. P. Ershov, On Programming of Arithmetic Operations. Comm. ACM 1 (1958 3-6. | Zbl

[7] P. Flajolet, J. C. Raoult and J. Vuillemin, The Number of Registers required for Evaluating Arithmetic Expressions. Theoret. Comput. Sci. 9 (1979) 99-125. | MR | Zbl

[8] P. Flajolet and A. Odlyzko, Singularity Analysis of Generating Functions. SIAM J. Discrete Math. 3 (1990) 216-240. | MR | Zbl

[9] P. Flajolet and H. Prodinger, Register Allocation for Unary-Binary Trees. SIAM J. Comput. 15 (1986) 629-640. | MR | Zbl

[10] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums. Theoret Comput. Sci. 144 (1995) 3-58. | MR | Zbl

[11] J. Françon, Sur le nombre de registres nécessaires à l'évaluation d'une expression arithmétique. Theoret. Informatics Appl. 18 (1984) 355-364. | Numdam | MR | Zbl

[12] R. E. Horton, Erosioned development of systems and their drainage basins, hydrophysical approach to quantitative morphology. Bull. Geol. Soc. of America 56 (1945) 275-370.

[13] R. Kemp, The Average Number of Registers Needed to Evaluate a Binary Tree Optimally. Acta Inform. 11 (1979) 363-372. | MR | Zbl

[14] R. Kemp, A Note on the Stack Size of Regularly Distributed Binary Trees. BIT 20 (1980) 157-163. | MR | Zbl

[15] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms. Wiley-Teubner Series in Computer Science (1984). | MR | Zbl

[16] R. Kemp, On the Stack Ramification of Binary Trees. Random Graphs 2 (1992) 117-138. | MR | Zbl

[17] D. E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 3rd Ed. Addison-Wesley (1997). | MR | Zbl

[18] A. Meir, J. W. Moon and J. R. Pounder, On the Order of Random Channel Networks. SIAM J. Algebraic Discrete Math. 1 (1980) 25-33. | MR | Zbl

[19] M. E. Nebel, New Results on the Stack Ramification of Binary Trees. J. Autom. Lang. Comb. 2 (1997) 161-175. | MR | Zbl

[20] M. E. Nebel, The Stack-Size of Tries, A Combinatorial Study. Theoret. Comput. Sci. (to appear). | MR | Zbl

[21] M. E. Nebel, The Stack-Size of Uniform Random Tries Revisited (submitted).

[22] A. N. Strahler, Hypsometric (area-altitude) analysis of erosonal topology. Bull. Geol. Soc. of America 63 (1952) 1117-1142.