Codes générateurs minimaux de langages de mots bi-infinis
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 6, pp. 585-596.
@article{ITA_2000__34_6_585_0,
     author = {Devolder, Jeanne},
     title = {Codes g\'en\'erateurs minimaux de langages de mots bi-infinis},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {585--596},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {6},
     year = {2000},
     mrnumber = {1844720},
     zbl = {0990.94020},
     language = {fr},
     url = {http://archive.numdam.org/item/ITA_2000__34_6_585_0/}
}
TY  - JOUR
AU  - Devolder, Jeanne
TI  - Codes générateurs minimaux de langages de mots bi-infinis
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2000
SP  - 585
EP  - 596
VL  - 34
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/item/ITA_2000__34_6_585_0/
LA  - fr
ID  - ITA_2000__34_6_585_0
ER  - 
%0 Journal Article
%A Devolder, Jeanne
%T Codes générateurs minimaux de langages de mots bi-infinis
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2000
%P 585-596
%V 34
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/item/ITA_2000__34_6_585_0/
%G fr
%F ITA_2000__34_6_585_0
Devolder, Jeanne. Codes générateurs minimaux de langages de mots bi-infinis. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) no. 6, pp. 585-596. http://archive.numdam.org/item/ITA_2000__34_6_585_0/

[1] J. Berstel et D. Perrin, Theory of codes. Academic Press, Orlando (1985). | MR | Zbl

[2] D. Beauquier, Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986).

[3] V. Bruyère, Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear).

[4] J. Devolder, Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90.

[5] J. Devolder et I. Litovsky, Finitely generated biω-langages, Theoret. Comput. Sci. 85 (1991) 33-52. | MR | Zbl

[6] J. Devolder et E. Timmerman, Finitary codes for biinfinite words. RAIRO: Theoret. Informaties Appl. 26 (1992) 363-386. | Numdam | MR | Zbl

[7] J. Devolder, Precircular codes and periodic bi-infinite words. Inform. and Comput. 107 (1993) 185-201. | MR | Zbl

[8] J. Devolder, Codes, mots infinis et bi-infinis. Ph. D. Thesis, University of Lille I, France (1993).

[9] J. Devolder, M. Latteux, I. Litovsky et L. Staiger, Codes and infinite words. Acta Cybernet. 11 (1994) 241-256. | MR | Zbl

[10] F. Gire et M. Nivat, Langages algébriques de mots bi-infinis. Theoret. Comput Sci. 86 (1991) 277-323. | MR | Zbl

[11] J.-L. Lassez, Circular codes and synchronisation. Internat J. Comput Inform. Sci. 5 (1976) 201-208. | MR | Zbl

[12] I. Litovsky, Prefix-free languages as ω-generators. Inform. Process: Lett. 37 (1991) 61-65. | MR | Zbl

[13] M. Nivat et D. Perrin, Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59.