Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
Journées équations aux dérivées partielles (2000), article no. 8, 14 p.

We shall give the local in time existence of the solutions in Gevrey classes to the Cauchy problem for Kirhhoff equations of p-laplacian type and investigate the propagation of analyticity of solutions for real analytic deta. When p=2, his equation as the global real analytic solution for the real analytic initial data.

@incollection{JEDP_2000____A8_0,
     author = {Kajitani, Kunihiko},
     title = {Propagation of analyticity of solutions to the {Cauchy} problem for {Kirchhoff} type equations},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {8},
     pages = {1--14},
     publisher = {Universit\'e de Nantes},
     year = {2000},
     zbl = {01808698},
     language = {en},
     url = {http://archive.numdam.org/item/JEDP_2000____A8_0/}
}
TY  - JOUR
AU  - Kajitani, Kunihiko
TI  - Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
JO  - Journées équations aux dérivées partielles
PY  - 2000
SP  - 1
EP  - 14
PB  - Université de Nantes
UR  - http://archive.numdam.org/item/JEDP_2000____A8_0/
LA  - en
ID  - JEDP_2000____A8_0
ER  - 
%0 Journal Article
%A Kajitani, Kunihiko
%T Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations
%J Journées équations aux dérivées partielles
%D 2000
%P 1-14
%I Université de Nantes
%U http://archive.numdam.org/item/JEDP_2000____A8_0/
%G en
%F JEDP_2000____A8_0
Kajitani, Kunihiko. Propagation of analyticity of solutions to the Cauchy problem for Kirchhoff type equations. Journées équations aux dérivées partielles (2000), article  no. 8, 14 p. http://archive.numdam.org/item/JEDP_2000____A8_0/

[1] Alinhac, S. & Métivier, G. Propagation de L'analyticité des solutions de systèmes hyperboliques non-linéaires. Inv. Math. vol.75 (1984), 189-203. | MR | Zbl

[2] S. Bernstein, Sur une classe d'équations fonctionnelles aux dérivèes partielles, Izv. Akad. Nauk SSSR, Ser. Mat. v.4, 1940, 17-26. | JFM | MR | Zbl

[3] K. Kajitani, Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey class, Hokkaido Math. J. v.12, 1983, 434-460. | MR

[4] Kajitani K. The Cauchy problem for nonlinear hyperbolic systems, Bull. Sci. Math. v.110, 1986, 3-48. | MR | Zbl

[5] Kajitani K. & Yamaguti K. Propagation of analyticity of solutions to the Cauchy problem for nonlinear symmetrizable systems, Ann. Scuola Norm. Sup. Pisa vol. 28, 1999, 471-487. | Numdam | MR | Zbl

[6] Kajitani K. On the Cauchy problem for Kirchhoff equations of p-Laplacian type, Proceeding of Colloque of P.D.E. in memory of Jean Leray, 1999, Sweden.

[7] Lax, P.D. Nonlinear hyperbilic equations, Comm. Pure Appl. Math. vol. 6 (1953), 231-258. | MR | Zbl

[8] Mizohata, S. Analyticity of solutions of hyperbolic systems with analytic coefficients, Comm. Pure Appl. Math. vol. 14 (1961), 547-559. | MR | Zbl

[9] S.I. Pohozaev, On a class of quasilinear hyperbolic equations, Math. USSR. Sb. v.96, 1975, 152-166. | MR | Zbl