On the free surface Navier-Stokes equation in the inviscid limit
Journées équations aux dérivées partielles, (2011), article no. 10, 14 p.

The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.

@article{JEDP_2011____A10_0,
     author = {Rousset, Frederic},
     title = {On the free surface Navier-Stokes equation in the inviscid limit},
     journal = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2011},
     doi = {10.5802/jedp.82},
     language = {en},
     url = {http://www.numdam.org/item/JEDP_2011____A10_0}
}
Rousset, Frederic. On the free surface Navier-Stokes equation in the inviscid limit. Journées équations aux dérivées partielles,  (2011), article  no. 10, 14 p. doi : 10.5802/jedp.82. http://www.numdam.org/item/JEDP_2011____A10_0/

[1] Alazard, T., Burq, N. and Zuily C. On the Water Waves Equations with Surface Tension, Duke Math. J. 158 3 (2011), 413-499. | MR 2805065 | Zbl pre05920537

[2] Alinhac, S. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations 14, 2(1989), 173–230. | MR 976971 | Zbl 0692.35063

[3] Bardos, C. Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40 (1972), 769–790. | MR 333488 | Zbl 0249.35070

[4] Bardos, C., and Rauch, J. Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Amer. Math. Soc. 270, 2 (1982), 377–408. | MR 645322 | Zbl 0485.35010

[5] Beale, J. T. The initial value problem for the Navier-Stokes equations with a free surface.Comm. Pure Appl. Math. 34, 3 (1981), 359–392. | MR 611750 | Zbl 0464.76028

[6] Beirão da Veiga, H. Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5, 4 (2006), 907–918. | MR 2246015 | Zbl 1132.35067

[7] Beirão da Veiga, H., and Crispo, F. Concerning the W k,p -inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech.

[8] Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4) 14, 2(1981). | Numdam | MR 631751 | Zbl 0495.35024

[9] Christodoulou, D. and Lindblad, H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53, 12(2000), 1536–1602. | MR 1780703 | Zbl 1031.35116

[10] Clopeau, T., Mikelić, A., and Robert, R. On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 6 (1998), 1625–1636. | MR 1660366 | Zbl 0911.76014

[11] Coutand, D. and Shkoller S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007),829–930. | MR 2291920 | Zbl 1123.35038

[12] Gérard-Varet, D. and Dormy, E. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 2(2010), 591–609 | MR 2601044 | Zbl 1197.35204

[13] Germain, P., Masmoudi, N. and Shatah, J. Global solutions for the gravity water waves in dimension 3, arXiv:0906.5343.

[14] Gisclon, M., and Serre, D. Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319, 4 (1994), 377–382. | MR 1289315 | Zbl 0808.35075

[15] Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53, 9(2000),1067–1091. | MR 1761409 | Zbl 1048.35081

[16] Grenier, E., and Guès, O. Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143, 1 (1998), 110–146. | MR 1604888 | Zbl 0896.35078

[17] Grenier, E., and Rousset, F. Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 11 (2001), 1343–1385. | MR 1846801 | Zbl 1026.35015

[18] Guès, O. Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial Differential Equations 15, 5 (1990), 595–645. | MR 1070840 | Zbl 0712.35061

[19] Guès, O., Métivier, G., Williams, M. and Zumbrun, K., Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. 197, 1(2010), 1–87. | MR 2646814 | Zbl 1217.35136

[20] Guo, Y. and Nguyen T. A note on the Prandtl boundary layers, arXiv:1011.0130. | MR 2849481

[21] Hörmander, L. Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math. (2) 83 (1966), 129–209. | MR 233064 | Zbl 0132.07402

[22] Iftimie, D., and Planas, G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 4 (2006), 899–918. | MR 2214949 | Zbl 1169.35365

[23] Iftimie, D., and Sueur, F. Viscous boundary layers for the Navier-Stokes equations with the navier slip conditions. Arch. Rat. Mech. Analysis, available online.

[24] Kelliher, J. P. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 1 (2006), 210–232 (electronic). | MR 2217315 | Zbl pre05029418

[25] Lannes, D.Well-posedness of the water-waves equations, Journal AMS 18 (2005) 605-654. | MR 2138139 | Zbl 1069.35056

[26] Lindblad, H. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Comm. Pure Appl. Math. 56. 2(2003), 153–197. | MR 1934619 | Zbl 1025.35017

[27] Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162. 1 (2005), 109–194. | MR 2178961 | Zbl 1095.35021

[28] Masmoudi, N. and Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition, preprint 2010, arXiv:1008.1678. | MR 2885569

[29] Masmoudi, N. and Rousset F. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equation, preprint 2011.

[30] Métivier, G. and Zumbrun K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175 2005, 826. | MR 2130346 | Zbl 1074.35066

[31] Rousset, F. Characteristic boundary layers in real vanishing viscosity limits. J. Differential Equations 210, 1 (2005), 25–64. | MR 2114123 | Zbl 1060.35015

[32] Sammartino, M., and Caflisch, R. E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192, 2 (1998), 433–461. | MR 1617542 | Zbl 0913.35102

[33] Shatah, J. and Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008),698–744. | MR 2388661 | Zbl 1174.76001

[34] Tani, A., and Tanaka, N. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rational Mech. Anal. 130, 4(1995), 303–314. | MR 1346360 | Zbl 0844.76025

[35] Tartakoff, D. S. Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1971/72), 1113–1129. | MR 440182 | Zbl 0235.35019

[36] Temam, R., and Wang, X. Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J. Differential Equations 179, 2 (2002), 647–686. | MR 1885683 | Zbl 0997.35042

[37] Xiao, Y., and Xin, Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 7 (2007), 1027–1055. | MR 2319054 | Zbl 1117.35063

[38] Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc.,12 (1999), 445–495. | MR 1641609 | Zbl 0921.76017

[39] Wu, S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 1(2011), 125–220. | MR 2782254 | Zbl pre05883623