Quantiles conditionnels
Journal de la Société française de statistique, Volume 139 (1998) no. 4, pp. 31-44.
@article{JSFS_1998__139_4_31_0,
     author = {Poiraud-Casanova, Sandrine and Thomas-Agnan, Christine},
     title = {Quantiles conditionnels},
     journal = {Journal de la Soci\'et\'e fran\c{c}aise de statistique},
     pages = {31--44},
     publisher = {Soci\'et\'e de statistique de Paris},
     volume = {139},
     number = {4},
     year = {1998},
     language = {fr},
     url = {http://archive.numdam.org/item/JSFS_1998__139_4_31_0/}
}
TY  - JOUR
AU  - Poiraud-Casanova, Sandrine
AU  - Thomas-Agnan, Christine
TI  - Quantiles conditionnels
JO  - Journal de la Société française de statistique
PY  - 1998
SP  - 31
EP  - 44
VL  - 139
IS  - 4
PB  - Société de statistique de Paris
UR  - http://archive.numdam.org/item/JSFS_1998__139_4_31_0/
LA  - fr
ID  - JSFS_1998__139_4_31_0
ER  - 
%0 Journal Article
%A Poiraud-Casanova, Sandrine
%A Thomas-Agnan, Christine
%T Quantiles conditionnels
%J Journal de la Société française de statistique
%D 1998
%P 31-44
%V 139
%N 4
%I Société de statistique de Paris
%U http://archive.numdam.org/item/JSFS_1998__139_4_31_0/
%G fr
%F JSFS_1998__139_4_31_0
Poiraud-Casanova, Sandrine; Thomas-Agnan, Christine. Quantiles conditionnels. Journal de la Société française de statistique, Volume 139 (1998) no. 4, pp. 31-44. http://archive.numdam.org/item/JSFS_1998__139_4_31_0/

Antoch J., Janssen P. (1989). Non parametric regression M-quantiles. Statistics & Probability Letters. 8 pp. 355-362. | MR | Zbl

Berlinet A., Cadre B., Gannoun A. (1998). Estimation non paramétrique de la médiane conditionnelle spatiale. Preprint.

Berlinet A., Gannou A., Matzner-Lober E. (1997). Asymptotic normality of the non parametric estimator of conditional median under mixing conditions. Preprint.

Berlinet A., Gannoun A., Matzner-Lober E. (1998). Propriétés asymptotiques d'estimateurs convergents des quantiles conditionnels. C. R. Arcad. Sci. Paris, t. Série 1, pp. 611-614. | Zbl

Bhattacharya P.K., Gangopadhyay A.K. (1990). Kernel and nearest-neighbor estimation of a conditional quantile. Ann. Math. Statist. 18 (3) pp. 1400-1415. | MR | Zbl

Boente G., Fraiman R. (1995). Asymptotic distribution of smoothers based on local means and local medians under dependance. Journal of Multivariate Analysis. 54 pp. 77-90. | MR | Zbl

Chauduri P. (1991). Nonparametric estimates of regression quantiles and their local Bahadur representation. Ann. Math. Statist. 19 (2) pp. 760-777. | MR | Zbl

Cheng C., Parzen E. (1997). Unified estimators of smooth quantile and quantile density functions. Journal of Statistical and Planning Inference. 59 pp. 291-307. | MR | Zbl

Cole T.J., Green P.J. (1992). Smoothing reference centile curves : the LMS method and penalized likelihood. Statistics in Medecine. 11 pp. 1305-1319.

Csorgo M., Horvath L. (1993). Weighted approximation in probability and statistics. Wiley, New-York. | MR | Zbl

Csorgo M., Revezc P. (1984). Two approaches to constructing simultaneous confidence bounds for quantiles. Prob. and Math. Statist. 4 pp. 221-236. | MR | Zbl

Davis C.E., Harrell F.E. (1982). A new distribution-free quantile estimator. Biometrika. 69 (3) pp. 635-640. | MR | Zbl

Ducharme G.R., Gannoun A., Guertin M.C., Jequier J.C. (1995). Reference values obtained by kernel-based estimation of quantile regression. Biometrics. 51 pp. 1105- 1116. | Zbl

Falk M. (1984). Relative deficiency of Kernel type estimators of quantiles. Ann. Math. Statist. 12 (1) pp. 261-268. | MR | Zbl

Fan J., Hu T. C., Truong Y.K. (1994). Robust nonparametric function estimation. Scand. J. Statist. 21 pp. 433-446. | MR | Zbl

Gannoun A. (1991). Prédiction non paramétrique : médianogramme et méthode du noyau en estimation de la médiane conditionnelle. Statistique et Analyse des données. 16 (1) pp. 23-42.

Goldstein H., Pan H. (1992). Percentile smoothing using piecewise polynomials with covariates. Biometrics. 48 pp. 1057- 1068. | MR

Hart J.D. (1991). Comment to "Choosing a kernel regression estimator". Statistical Sciences. 6 pp. 425-427. | MR

He X., Shi P. (1994). Convergence rate of B-spline estimators of non parametric conditional quantile functions. Nonparametric Statistics. 3 pp. 299-308. | MR

Hogg R.V. (1975). Estimates of pourcentile regression lines using salary data. Journal of the American Statistical Association. 70 pp. 56-59.

Kaigh W.D., Cheng C. (1991). Subsampling quantile estimators and uniformity criteria. Comm. Statist A. 20 pp. 539-560. | MR | Zbl

Kaigh W.D., Lachenbruch P.A. (1982). A generalized quantile estimator. Comm. Statist A. 11 pp. 2217-2238. | MR | Zbl

Koenker R., Bassett G. (1978). Regression quantiles. Econometrica. 46 (1). | MR | Zbl

Koenker R., Bassett G. (1982). An empirical quantile function for linear models with i.i.d. errors. Journal of the American Statistical Association. 77 pp. 407-415. | MR | Zbl

Koenker R., Ng P., Portnoy S. (1994). Quantile smoothing splines. Biometrika.81 (4) pp. 673-680. | MR | Zbl

Lejeune M.G., Sarda P. (1988). Quantile regression : a nonparametric approach. Computational Statistics & Data Analysis. 6 pp. 229-239. | MR | Zbl

Martins Rosa A.C., Delecroix M. (1992). Ergodic processes prediction via estimation of the conditional distribution function. Pub I.S.U.P. vol XXXIX fasc 2, 95, pp. 35-56. | Zbl

Mukerjee H. (1993). An improved monotone conditional quantile estimator. Ann. Math. Statist. 21 (2) pp. 924-942. | MR | Zbl

Padgett W.J., Lio Y.L. (1993). A smooth nonparametric quantile estimator for IFR distributions. Nonparametric Statistics. 2 pp. 195-202. | MR

Parzen E.. (1979). Nonparametric statistical data modeling (with comments). Journal of the American Statistical Association. 74 pp. 105-131. | MR | Zbl

Poiraud-Casanova S., Thomas-Agnan C. (1998). Monotone nonparametric regression quantiles. Cahier technique n° 97.09.452. GREMAQ, 21 Allées de Brienne 31000 Toulouse, France.

Samanta M. (1989). Nonparametric estimation of conditional quantiles. Statistic and probability letters. 7 (5) pp. 407-412. | MR | Zbl

Schumaker L.L. (1981). Spline functions. Wiley. | MR

Sheather S.J., Marron J.S. (1990). Kernel quantile estimators. Journal of the American Statistical Association. 85 pp. 410-416. | MR | Zbl

Sonesson S.E., Fouron J.C., Doblik S.P., Tawile C., Lessard M., Skoll A., Guertin M.C., Ducharme G.R. (1993). Reference values for Doppler velocimetric indices from the fetal and placental ends of the umbilical artery during normal pregnancy. Journal of Clinical Ultrasound. 21 pp. 317-324.

Stone C.J. (1977). Consistent nonparametric regression. Ann. Math. Statist. 5(4) pp.595-645. | MR | Zbl

Stute W. (1986). Conditional empirical processes. Ann. Math. Statist. 14(2) pp. 638-647. | MR | Zbl

Truong Y.K. (1989). Asymptotic properties of kernel estimators based on local medians. Ann. Math. Statist. 17(2) pp. 606-617. | MR | Zbl

Tsybakov A.B. (1986). Robust reconstruction of functions by the local-approximation method. Problems of Information Transmission. 22 pp. 133-146. | MR | Zbl

Yamato H. (1973). Uniform convergence of an estimation of a distribution function. Bull. Math. Statist. 15 pp. 69-70. | MR | Zbl

Yang S.S. (1985). A smooth nonparametric estimator of a quantile function. Journal of the American Statistical Association. 80 (392), Theory and Methods, pp. 1004-1011. | MR | Zbl

Yu K., Jones M.C. (1998). Local linear quantile regression. Journal of the American Statistical Association. 93 (441) pp. 228-237. | MR | Zbl

Zelterman D. (1990). Smooth nonparametric estimation of the quantile function. Journal of Statistical and Plannig Inference. 26 pp. 339-352. | MR | Zbl