Procédures optimales fondées sur les rangs multivariés
Journal de la société française de statistique, Volume 144 (2003) no. 4, p. 25-66
@article{JSFS_2003__144_4_25_0,
     author = {Paindaveine, Davy},
     title = {Proc\'edures optimales fond\'ees sur les rangs multivari\'es},
     journal = {Journal de la soci\'et\'e fran\c caise de statistique},
     publisher = {Soci\'et\'e fran\c caise de statistique},
     volume = {144},
     number = {4},
     year = {2003},
     pages = {25-66},
     language = {fr},
     url = {http://www.numdam.org/item/JSFS_2003__144_4_25_0}
}
Paindaveine, Davy. Procédures optimales fondées sur les rangs multivariés. Journal de la société française de statistique, Volume 144 (2003) no. 4, pp. 25-66. http://www.numdam.org/item/JSFS_2003__144_4_25_0/

[1] Brockwell P. J. et Davis R.A. (1987), Time Series: Theory and Methods, Springer, New York. | MR 868859 | Zbl 0604.62083

[2] Chernoff H. et Savage I.R. (1958), Asymptotic normality and efficiency of certain nonparametric tests, Ann. Math. Statist. 29, 972-994. | MR 100322 | Zbl 0092.36501

[3] Choi S., Hall W.J. et Schick A. (1996), Asymptotically uniformly most powerful tests in parametric and semiparametric models, Ann. Statist. 24, 841-861. | MR 1394992 | Zbl 0860.62020

[4] Garel B. et Hallin M. (1995), Local asymptotic normality of multivariate ARMA processes with a linear trend, Ann. Inst. Statist. Math. 47, 551-579. | MR 1364260 | Zbl 0841.62076

[5] Garel B. et Hallin M. (1999), Rank-based AR order identification, J. Amer. Statist. Assoc. 94, 1357-1371. | MR 1731496 | Zbl 0994.62089

[6] Genot Catalot V. et Picard D. (1993), Éléments de Statistique asymptotique, Springer-Verlag, Paris. | MR 1618701 | Zbl 0875.62002

[7] Hallin M. (1986), Non-stationary q-dependent processes and time-varying moving-average models: invertibility properties and the forecasting problem, Adv. Appl. Prob. 18, 170-210. | MR 827335 | Zbl 0597.62096

[8] Hallin M. (1994), On the Pitman-nonadmissibility of correlogram-based methods, Jour. Time Series Anal. 15, 607-612. | MR 1312324 | Zbl 0807.62068

[9] Hallin M., Ingenbleek J.-Fr et Puri M.L. (1985), Linear serial rank tests for randomness against ARMA alternatives, Ann. Statist. 13, 1156-1181. | MR 803764 | Zbl 0584.62064

[10] Hallin M., Ingenbleek J.-Fr et Puri M.L. (1989), Asymptotically most powerful rank tests for multivariate randomness against seriai dependence, J. Multivariate Anal. 30, 34-71. | MR 1003708 | Zbl 0685.62047

[11] Hallin M. et Mélard G. (1988), Rank-based tests for randomness against first-order serial dependence, J. Amer. Statist. Assoc. 83, 1117-1128. | MR 997590

[12] Hallin M. et Paindaveine D. ( 2002a), Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks, Ann. Statist. 30, 1103-1133. | MR 1926170 | Zbl 1101.62348

[13] Hallin M. et Paindaveine D. ( 2002b), Optimal procedures based on interdirections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence, Bernoulh 8, 787-816. | MR 1963662 | Zbl 1018.62046

[14] Hallin M. et Paindaveine D. ( 2002c), Multivariate signed ranks: Randles' interdirections or Tyler's angles? In Y. Dodge, Ed., Statistical Data Analysis Based on the L1 Norm and Related Procedures, Birkhauser, Basel, 271-282. | MR 2001322 | Zbl 1145.62339

[15] Hallin M. et Paindaveine D. (2003), Affine invariant linear hypotheses for the multivariate general linear model with VARMA error terms. In M. Moore, S. Froda, and Chr. Léger, Eds, Mathematical Statistics and Applications : Festschrift for Constance van Eeden, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 417-434. | MR 2138306

[16] Hallin M. et Paindaveine D. ( 2004a), Rank-based optimal tests of the adequacy of an elliptic VARMA model, Ann. Statist, à paraître. | MR 2153998 | Zbl 1076.62044

[17] Hallin M. et Paindaveine D. ( 2004b), Asymptotic linearity of serial and nonserial multivariate signed rank statistics, soumis. | Zbl 1082.62049

[18] Hallin M. et Paindaveine D. ( 2004c), Affine invariant aligned rank tests for the multivariate general linear model with ARMA errors, J. Multivariate Anal., à paraître. | MR 2119768 | Zbl 1087.62098

[19] Hallin M. et Paindaveine D. ( 2004d), Multivariate signed rank tests in vector autoregressive order identification, Statistical Science, à paraître. | MR 2185591 | Zbl 1100.62577

[20] Hallin M. et Puri M.L. (1988), Optimal rank-based procedures for time-series analysis: testing an ARMA model against other ARMA models, Ann. Statist. 16, 402-432. | MR 924878 | Zbl 0659.62111

[21] Hallin M. et Puri M.L. (1991), Time-series analysis via rank-order theory: signed-rank tests for ARMA models, J. Multivariate Anal. 39, 1-29. | MR 1128669 | Zbl 0751.62041

[22] Hallin M. et Puri M.L. (1994), Aligned rank tests for linear models with autocorrelated error terms, J. Multivariate Anal. 50, 175-237. | MR 1293044 | Zbl 0805.62050

[23] Hallin M. et Puri M.L. (1994), A multivariate Wald-Wolfowitz rank test against serial dependence, Canadian J. Statist. 23, 55-65. | MR 1340961 | Zbl 0821.62022

[24] Hallin M. et Tribel O. (2000), The efficiency of some nonparametric competitors to correlogram-based methods. In F.T. Bruss and L. Le Cam, Eds, Game Theory, Optimal Stopping, Probability, and Statistics, Papers in honor of T. S. Ferguson on the occasion of his 70th birthday, I.M.S. Lecture Notes-Monograph Series, I.M.S., Hayward, California, 249-262. | MR 1833863 | Zbl 0980.62036

[25] Hallin M. et Werker B.J.M. (1999), Optimal testing for semi-parametric AR models: from Gaussian Lagrange multipliers to autoregression rank scores and adaptive tests. In S. Ghosh, Ed., Asymptotics, Nonparametrics, and Time Series, M. Dekker, New York, 295-350. | MR 1724702 | Zbl 1069.62541

[26] Hallin M. et Werker B.J.M. (2003), Semiparametric efficiency, distribution-freeness, and invariance, Bernoulli 9, 55-65. | MR 1963675 | Zbl 1020.62042

[27] Hannan E. J. (1970), Multiple Time series, J. Wiley, New York. | MR 279952 | Zbl 0211.49804

[28] Hettmansperger T. P., Nyblom J. et Oja H. (1994), Affine invariant multivariate one-sample sign tests, J. Roy. Statist. Soc. Ser. B 56, 221-234. | MR 1257809 | Zbl 0795.62055

[29] Hettmansperger T. P., Mottonen J. et Oja H. (1997), Affine invariant multivariate one-sample signed-rank tests, J. Amer. Statist. Assoc. 92, 1591-1600. | MR 1615268 | Zbl 0943.62051

[30] Hodges J. L. et Lehmann E.L. (1956), The efficiency of some nonparametric competitors of the t-test, Ann. Math. Statist. 27, 324-335. | MR 79383 | Zbl 0075.29206

[31] L E Cam L. (1986), Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York. | MR 856411 | Zbl 0605.62002

[32] Mottonen J. et Oja H. (1995), Multivariate spatial sign and rank methods, J. Nonparam. Statist. 5, 201-213. | MR 1346895 | Zbl 0857.62056

[33] Mottonen J., Oja H. et Tienari J. (1997), On the efficiency of multivariate spatial sign and rank methods, Ann. Statist. 25, 542-552. | MR 1439313 | Zbl 0873.62048

[34] Mottonen J., Hettmansperger T.P., Oja H. et Tienari J. (1998), On the efficiency of the multivariate affine invariant rank methods, J. Multivariate Anal. 66, 118-132. | MR 1648529 | Zbl 1127.62361

[35] Oja H. (1999), Affine invariant multivariate sign and rank tests and corresponding estimates: a review, Scand. J. Statist. 26, 319-343. | MR 1712063 | Zbl 0938.62063

[36] Oja H. et Paindaveine D. (2004), Optimal testing procedures based on hyperplanes, soumis.

[37] Peters D. et Randles R.H. (1990), A multivariate signed-rank test for the one-sample location problem, J. Amer. Statist. Assoc. 85, 552-557. | MR 1141757 | Zbl 0709.62051

[38] Puri M. L. et Sen P.K. (1971), Nonparametric Methods in Multivariate Analysis, J. Wiley, New York. | MR 298844 | Zbl 0237.62033

[39] Randles R.H. (1989), A distribution-free multivariate sign test based on interdirections, J. Amer. Statist. Assoc. 84, 1045-1050. | MR 1134492 | Zbl 0702.62039

[40] Randles R.H. (2000), A simpler, affine-invariant, multivariate, distribution-free sign test, J. Amer. Statist. Assoc. 95, 1263-1268. | MR 1792189 | Zbl 1009.62047

[41] Randles R.H. et Um Y. (1998), Nonparametric tests for the multivariate multisample location problem, Statistica Sinica 8, 801-812. | MR 1651509 | Zbl 0905.62048

[42] Tyler D. E. (1987), A distribution-free M-estimator of multivariate scatter, Ann. Statist. 15, 234-251. | MR 885734 | Zbl 0628.62053