Les lois méta-elliptiques sont des modèles statistiques multivariés dans lesquels la structure de dépendance est gouvernée par une copule elliptique et où les distributions marginales sont arbitraires. Dans cet article, des tests d’adéquation sont proposés afin de construire un modèle méta-elliptique approprié pour des données multidimensionnelles. Alors que le choix des marges peut se faire via des tests d’adéquation classiques, comment sélectionner une copule elliptique adéquate est moins clair. Pour combler ce manque, des méthodes d’adéquation formelles sont développées ici autour de la partie radiale qui caractérise une loi elliptique. L’idée centrale consiste à estimer sa fonction de répartition univariée à partir d’un pseudo-échantillon qui découle des observations multivariées originales. Ensuite, on utilise comme statistique de test la distance de Cramér–von Mises entre cet estimateur non-paramétrique et sa version attendue sous l’hypothèse nulle. Une -valeur approximative est obtenue d’une application du bootstrap paramétrique. La méthode est généralisée au cas où le générateur elliptique est à paramètres inconnus en utilisant un critère à distance minimale. Bien que le comportement asymptotique des tests ne soit pas étudié ici, des simulations Monte–Carlo indiquent que les méthodes possèdent de belles propriétés échantillonnales en termes de seuil et de puissance. Les techniques sont illustrées sur les jeux de données “Danish fire insurance”, “Upper Mississippi river”, “Oil currency” et “Uranium exploration”.
Meta-elliptical distributions are multivariate statistical models in which the dependence structure is governed by an elliptical copula and where the marginal distributions are arbitrary. In this paper, goodness-of-fit tests are proposed for the construction of an appropriate meta-elliptical model for multidimensional data. While the choice of the marginal distributions can be guided by classical goodness-of-fit testing, how to select an adequate elliptical copula is less clear. In order to fill this gap, formal copula goodness-of-fit methodologies are developed here around the radial part that characterizes an elliptical distribution. The key idea consists in estimating its univariate distribution function from a pseudo-sample derived from the original multivariate observations. Then, a Cramér–von Mises distance between this non-parametric estimator and the expected parametric version under the null hypothesis is used as a test statistic. An approximate -value is obtained from an application of the parametric bootstrap. The method is extended to the case where the elliptical generator has unknown parameters using a minimum-distance criterion. While a careful investigation of the asymptotic behavior of the tests is not presented here, Monte–Carlo simulations indicate that the methods have good sample properties in terms of size and power. The techniques are illustrated on the Danish fire insurance, Upper Mississippi river, Oil currency and Uranium exploration data sets.
Mot clés : Copule, tests d’adéquation, lois méta-elliptiques, méthode à distance minimale, bootstrap paramétrique
@article{JSFS_2013__154_1_78_0, author = {Quessy, Jean-Fran\c{c}ois and Bellerive, Rachelle}, title = {Statistical {Procedures} for the {Selection} of a {Multidimensional} {Meta-elliptical} {Distribution}}, journal = {Journal de la soci\'et\'e fran\c{c}aise de statistique}, pages = {78--101}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {154}, number = {1}, year = {2013}, zbl = {1316.62077}, language = {en}, url = {http://archive.numdam.org/item/JSFS_2013__154_1_78_0/} }
TY - JOUR AU - Quessy, Jean-François AU - Bellerive, Rachelle TI - Statistical Procedures for the Selection of a Multidimensional Meta-elliptical Distribution JO - Journal de la société française de statistique PY - 2013 SP - 78 EP - 101 VL - 154 IS - 1 PB - Société française de statistique UR - http://archive.numdam.org/item/JSFS_2013__154_1_78_0/ LA - en ID - JSFS_2013__154_1_78_0 ER -
%0 Journal Article %A Quessy, Jean-François %A Bellerive, Rachelle %T Statistical Procedures for the Selection of a Multidimensional Meta-elliptical Distribution %J Journal de la société française de statistique %D 2013 %P 78-101 %V 154 %N 1 %I Société française de statistique %U http://archive.numdam.org/item/JSFS_2013__154_1_78_0/ %G en %F JSFS_2013__154_1_78_0
Quessy, Jean-François; Bellerive, Rachelle. Statistical Procedures for the Selection of a Multidimensional Meta-elliptical Distribution. Journal de la société française de statistique, Numéro spécial sur les copules, Tome 154 (2013) no. 1, pp. 78-101. http://archive.numdam.org/item/JSFS_2013__154_1_78_0/
[1] Dependence properties of meta-elliptical distributions, Statistical modeling and analysis for complex data problems (GERAD 25th Anniv. Ser.), Volume 1, Springer, New York, 2005, pp. 1-15 | DOI | MR
[2] A copula goodness-of-fit approach based on the probability integral transformation, preprint, Volume Norwegian Computing Center (2007)
[3] Theory of multivariate statistics, Springer Texts in Statistics, Springer-Verlag, New York, 1999, xviii+288 pages | Zbl
[4] Distributions méta-elliptiques : inférence statistique et applications, Volume Master’s Thesis, Université du Québec à Trois-Rivières, Québec, Canada (2012)
[5] Minimum distance estimators for location and goodness of fit, J. Amer. Statist. Assoc., Volume 76 (1981) no. 375, pp. 663-670 | Zbl
[6] On the theory of elliptically contoured distributions, J. Multivariate Anal., Volume 11 (1981) no. 3, pp. 368-385 | DOI | Zbl
[7] A family of distributions for modelling nonelliptically symmetric multivariate data, J. Roy. Statist. Soc. Ser. B, Volume 43 (1981) no. 2, pp. 210-218 | Zbl
[8] Generalized Burr-Pareto-logistic distributions with applications to a uranium exploration data set, Technometrics, Volume 28 (1986) no. 2, pp. 123-131 | MR
[9] Weak convergence of the sample distribution function when parameters are estimated, Ann. Statist., Volume 1 (1973), pp. 279-290 | Zbl
[10] On the multivariate Laplace distribution, Signal Processing Letters, IEEE, Volume 13 (2006) no. 5, pp. 300-303
[11] Modelling extremal events, Applications of Mathematics (New York), 33, Springer-Verlag, Berlin, 1997, xvi+645 pages (For insurance and finance) | Zbl
[12] The meta-elliptical distributions with given marginals, J. Multivariate Anal., Volume 82 (2002) no. 1, pp. 1-16 | DOI | Zbl
[13] Symmetric multivariate and related distributions, Monographs on Statistics and Applied Probability, 36, Chapman and Hall Ltd., London, 1990, x+220 pages | Zbl
[14] Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data, Water Resour. Res, Volume 43 (2007) no. 9
[15] Goodness-of-fit procedures for copula models based on the probability integral transformation, Scand. J. Statist., Volume 33 (2006) no. 2, pp. 337-366 | DOI | Zbl
[16] Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, Ann. Inst. Henri Poincaré Probab. Stat., Volume 44 (2008) no. 6, pp. 1096-1127 | DOI | Numdam | Zbl
[17] Goodness-of-fit tests for copulas: a review and a power study, Insurance Math. Econom., Volume 44 (2009) no. 2, pp. 199-213 | DOI | Zbl
[18] Multisite flooding hazard assessment in the Upper Mississippi River, Journal of Hydrology, Volume 412–413 (2012), pp. 101-113
[19] Computing the nearest correlation matrix—a problem from finance, IMA J. Numer. Anal., Volume 22 (2002) no. 3, pp. 329-343 | DOI | Zbl
[20] A test for elliptical symmetry, J. Multivariate Anal., Volume 98 (2007), pp. 256-281 | Zbl
[21] Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivariate Anal., Volume 94 (2005) no. 2, pp. 401-419 | DOI | MR | Zbl
[22] Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhyā Ser. A, Volume 32 (1970), pp. 419-438 | MR | Zbl
[23] Copula structure analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., Volume 71 (2009) no. 3, pp. 737-753 | DOI | MR | Zbl
[24] A meta-Gaussian distribution with specified marginals, Technical Document (1996)
[25] A bivariate meta-Gaussian density for use in hydrology, Stochastic Hydrology and Hydraulics, Volume 11 (1997) no. 1, pp. 17-31 | Zbl
[26] Multivariate distributions at a cross-road, GP Patil, S. Kotz, JK Ord, Editors Statistical Distributions in Scientific Work, vol. 1 D, 1975
[27] Elliptical families and copulas: tilting and premium; capital allocation, Scand. Actuar. J. (2009) no. 2, pp. 85-103 | DOI | MR | Zbl
[28] -statistics, Statistics: Textbooks and Monographs, 110, Marcel Dekker Inc., New York, 1990, xii+302 pages (Theory and practice) | MR | Zbl
[29] Kendall’s tau for elliptical distributions, Credit risk: Measurement, evaluation and management (2003), pp. 149-156
[30] Tail conditional expectations for elliptical distributions, N. Am. Actuar. J., Volume 7 (2003) no. 4, pp. 55-71 | MR | Zbl
[31] Testing the Gaussian copula hypothesis for financial assets dependences, Quant. Finance, Volume 3 (2003) no. 4, pp. 231-250 | DOI | MR | Zbl
[32] An introduction to copulas, Springer Series in Statistics, Springer, New York, 2006, xiv+269 pages | MR | Zbl
[33] On the class of elliptical distributions and their applications to the theory of portfolio choice, Journal of Finance (1983), pp. 745-752
[34] The minimum distance method of testing, Metrika, Volume 27 (1980) no. 1, pp. 43-70 | DOI | MR | Zbl
[35] Minimum distance estimation and components of goodness-of-fit statistics, J. Roy. Statist. Soc. Ser. B, Volume 44 (1982) no. 2, pp. 178-189 | MR | Zbl
[36] Simulation experiments on the mean residual life function m(x), Proceedings of the XXVII ASTIN Colloquium, Copenhagen, Denmark, Volume 1 (1996), pp. 59-81
[37] Metric spaces and completely monotone functions, Ann. of Math. (2), Volume 39 (1938) no. 4, pp. 811-841 | DOI | JFM | MR | Zbl
[38] Empirical processes indexed by estimated functions, Asymptotics: particles, processes and inverse problems (IMS Lecture Notes Monogr. Ser.), Volume 55, Inst. Math. Statist., Beachwood, OH, 2007, pp. 234-252 | DOI | MR | Zbl
[39] Weighted likelihood copula modeling of extreme rainfall events in Connecticut, Journal of Hydrology, Volume 390 (2010) no. 1-2, pp. 108-115