Plusieurs problèmes liés au problème de Waring utilisent des identités où l’on exprime une forme linéaire en comme somme ou différence de puissances -ièmes de formes linéaires en . La plupart de ces identités sont fournies par des solutions au problème de Tarry-Escott, sauf deux d’entre elles, dues à Rao et Vaserstein. Nous montrons que ces deux identités sont naturellement liées aux groupes et , puis développons une théorie qui permet d’associer à chaque groupe fini quelques identités de ce type.
@article{JTNB_1991__3_1_1_0, author = {Habsieger, L.}, title = {Repr\'esentations des groupes et identit\'es polynomiales}, journal = {S\'eminaire de th\'eorie des nombres de Bordeaux}, pages = {1--11}, publisher = {Universit\'e Bordeaux I}, volume = {2e s{\'e}rie, 3}, number = {1}, year = {1991}, mrnumber = {1116097}, zbl = {0758.11042}, language = {fr}, url = {http://archive.numdam.org/item/JTNB_1991__3_1_1_0/} }
Habsieger, L. Représentations des groupes et identités polynomiales. Séminaire de théorie des nombres de Bordeaux, Serie 2, Volume 3 (1991) no. 1, pp. 1-11. http://archive.numdam.org/item/JTNB_1991__3_1_1_0/
[C-C] Remarks on equations related to Fermat's last theorem, Number Theory Related to Fermat's last theorem, Proceedings of the Conference sponsored by the Vaughn Foundation, édité par Neal Koblitz, Progress in Mathematics 26 Birkhäuser (1982) Boston, Basel, Stuggart, 255-261. | Zbl
et ,[D-D] On the computation of g(k) in Waring's problem, Math. Comp. 54, 190 (1990), 885-893. | MR | Zbl
et ,[E] On A4 + B4 + C4 + D4, Math. Comp. 51 (1988), 184, 825-835. | MR | Zbl
,[Es] Logarithmic series, Quarterly Journal of Math. 41 (1910), 141-156. | JFM
,[F-W] The "easier" Waring problem, Quart. J. Math. Oxford 10 (1939), 190-209. | JFM | Zbl
et ,[H] Applications of Group Representation Theory to the easier Waring Problem, prépublication.
,[Hu] on Tarry's problem, Quart. J. Math. Oxford 9 (1938), 315-320. | JFM | Zbl
,[H-W] An Introduction to the Theory of Numbers,5th edition, Oxford University Press, London, New-York. | JFM | MR
et ,[K] The function G(n) in Waring's problem, Izv. Akad. Nauk. SSSR Ser. Math. 49 (1985), 935-947, n° 5. | MR | Zbl
,[L] Gazeta Matematica 48 (1942), 68-69.
,[L-P] A counterexample to Euler's sum of powers conjecture, Math. Comp. 21 (1967), 101-103. | MR | Zbl
et ,[R] Representation of every number as a sum of rational k - th powers, J. London Math. Soc. 13 (1938), 14-16. | JFM | Zbl
,[T] L'intermédiaire des mathématiciens, 20 (1913), 68-70. | JFM
,[V] Every Integer is a Sum or Difference of 28 Integral Eight Powers, Journal of Number Theory 28 (1988), 66-68. | MR | Zbl
,[W] An easier Waring problem, J. London Math. Soc. 9 (1934), 267-272. | JFM
,