Nous donnons une caractérisation complète de tous les morphismes binaires qui préservent les mots sturmiens et montrons que les mots infinis engendrés par ces morphismes sont rigides.
We give a complete characterization of binary morphisms which preserve Sturmian words and show that infinite words generated by these morphisms are rigid.
@article{JTNB_1993__5_2_221_0, author = {Mignosi, Filippo and S\'e\'ebold, Patrice}, title = {Morphismes sturmiens et r\`egles de {Rauzy}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {221--233}, publisher = {Universit\'e Bordeaux I}, volume = {5}, number = {2}, year = {1993}, mrnumber = {1265903}, zbl = {0797.11029}, language = {fr}, url = {http://archive.numdam.org/item/JTNB_1993__5_2_221_0/} }
TY - JOUR AU - Mignosi, Filippo AU - Séébold, Patrice TI - Morphismes sturmiens et règles de Rauzy JO - Journal de théorie des nombres de Bordeaux PY - 1993 SP - 221 EP - 233 VL - 5 IS - 2 PB - Université Bordeaux I UR - http://archive.numdam.org/item/JTNB_1993__5_2_221_0/ LA - fr ID - JTNB_1993__5_2_221_0 ER -
Mignosi, Filippo; Séébold, Patrice. Morphismes sturmiens et règles de Rauzy. Journal de théorie des nombres de Bordeaux, Tome 5 (1993) no. 2, pp. 221-233. http://archive.numdam.org/item/JTNB_1993__5_2_221_0/
[1] A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41. | MR | Zbl
,[2] Substitution invariant cutting sequences, Journal de Théorie des Nombres de Bordeaux 5 (1993), 123-137. | Numdam | MR | Zbl
, , , ,[3] Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153. | MR | Zbl
, ,[4] Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), 381-400. | MR | Zbl
, ,[5] Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446. | Zbl
, , ,[6] Sturmian minimal sets, Amer. J. Math 66 (1944), 605-620. | MR | Zbl
,[7] Symbolic dynamics II - Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. | JFM | MR | Zbl
, ,[8] On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306. | MR | Zbl
, ,[9] Problems 149-151, "Problems and Solutions", EATCS Bulletin 32 (1987), 331-333.
,[10] Combinatorics on words, Addison Wesley, 1982. | MR | Zbl
,[11] On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84. | MR | Zbl
,[12] Mots infinis en arithmétique, in Automata on infinite words, Nivat, Perrin (Eds), Lecture Notes in Computer Science, Springer-Verlag 192 (1984), 165-171. | MR | Zbl
,[13] Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci. 88 (1991), 365-384. | MR | Zbl
,[14] The geometry of Markoff numbers, Math. Intelligencer 7 (1985), 20-29. | MR | Zbl
,[15] Beatty sequences, continued fractions, and certain shift operators, Canad. Math. Bull. 19 (1976), 473-482. | MR | Zbl
,[16] Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970. | MR | Zbl
,